
Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   1	
  

Windows 7 Security Event Log Format 
Todd Heberlein 

23 Sep 2010 

Windows security event log provides a rich source of information to detect and 
analyze a wide range of threats against computer systems. Unfortunately Windows 
tool to view these logs, Event Viewer, is extremely limited in its functionality. 
Furthermore, there are very few third-party analysis tools to fill the gap between 
what the Event Viewer provides and the potential information that can be leveraged 
from the security event logs. One potential reason for this gap is that the format of 
these event logs is poorly documented making it very difficult for third-party 
developers to write tools to analyze the data. This paper documents the event log 
format, thus providing a blueprint for developers to create native tools to analyze 
Windows 7 event logs. We begin by providing an overview of the format and key 
concepts that are needed to understand the details. Then we dive into a detailed 
description of the syntax of the event log format. 

	
  



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   2	
  

 

Table of Contents 
1	
   Introduction.............................................................................................................................. 4	
  
2	
   Broad	
  Concepts........................................................................................................................ 5	
  
2.1	
   File	
  architecture ............................................................................................................................ 5	
  
2.2	
   Space	
  Optimizations..................................................................................................................... 5	
  
2.2.1	
   XML	
  Templates..........................................................................................................................................6	
  
2.2.2	
   String	
  Reuse................................................................................................................................................6	
  
2.2.3	
   Just-­‐in-­‐time	
  Redundancy	
  Removal...................................................................................................7	
  

2.3	
   Few	
  More	
  Notes ............................................................................................................................. 7	
  
2.3.1	
   XML	
  Tokens ................................................................................................................................................7	
  
2.3.2	
   String	
  Encodings.......................................................................................................................................8	
  
2.3.3	
   Length	
  Fields..............................................................................................................................................9	
  
2.3.4	
   Pointers ........................................................................................................................................................9	
  
2.3.5	
   Data	
  Types...................................................................................................................................................9	
  
2.3.6	
   Graph	
  Key .................................................................................................................................................10	
  

3	
   Audit	
  Trail	
  Format................................................................................................................11	
  
3.1	
   File	
  Header ....................................................................................................................................11	
  
3.2	
   Chunk ..............................................................................................................................................12	
  
3.2.1	
   Chunk	
  Header .........................................................................................................................................12	
  
3.2.2	
   String	
  and	
  Template	
  Tables..............................................................................................................13	
  
3.2.3	
   Audit	
  Record ...........................................................................................................................................13	
  
3.2.4	
   Binary	
  XML	
  Stream...............................................................................................................................14	
  
3.2.5	
   Template	
  Definition .............................................................................................................................14	
  
3.2.6	
   Element	
  Node .........................................................................................................................................15	
  
3.2.7	
   String	
  Structure......................................................................................................................................15	
  
3.2.8	
   Attributes..................................................................................................................................................16	
  
3.2.9	
   XML	
  Children ..........................................................................................................................................16	
  
3.2.10	
   Value ........................................................................................................................................................17	
  
3.2.11	
   Substitution...........................................................................................................................................17	
  
3.2.12	
   Substitution	
  Array..............................................................................................................................17	
  
3.2.13	
   Index	
  Info...............................................................................................................................................17	
  

4	
   Testing ......................................................................................................................................18	
  
5	
   Conclusions .............................................................................................................................19	
  
6	
   References...............................................................................................................................20	
  
	
  



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   3	
  

List of Figures 
	
  
Figure	
  1:	
  The	
  Chunk	
  Model .......................................................................................................................... 5	
  
Figure	
  2:	
  Template	
  Definition ..................................................................................................................... 6	
  
Figure	
  3:	
  Removing	
  String	
  Redundancy	
  in	
  Templates ..................................................................... 7	
  
Figure	
  4:	
  String	
  Table	
  and	
  Linked	
  List .................................................................................................... 7	
  
Figure	
  5:	
  XML	
  Token	
  IDs ............................................................................................................................... 8	
  
Figure	
  6:	
  Strings ................................................................................................................................................ 8	
  
Figure	
  7:	
  Graph	
  Key .......................................................................................................................................11	
  
Figure	
  8:	
  File	
  Format.....................................................................................................................................11	
  
Figure	
  9:	
  File	
  Header.....................................................................................................................................11	
  
Figure	
  10:	
  Chunk	
  Structure ........................................................................................................................12	
  
Figure	
  11:	
  Chunk	
  Header ............................................................................................................................12	
  
Figure	
  12:	
  String	
  and	
  Template	
  Tables .................................................................................................13	
  
Figure	
  13:	
  Audit	
  Record...............................................................................................................................13	
  
Figure	
  14:	
  Binary	
  XML	
  Stream..................................................................................................................14	
  
Figure	
  15:	
  Template	
  Definition ................................................................................................................14	
  
Figure	
  16:	
  XML	
  Element	
  Node ..................................................................................................................15	
  
Figure	
  17:	
  String	
  Structure.........................................................................................................................15	
  
Figure	
  18:	
  Attributes.....................................................................................................................................16	
  
Figure	
  19:	
  XML	
  Children..............................................................................................................................16	
  
Figure	
  20:	
  Value ..............................................................................................................................................17	
  
Figure	
  21:	
  Substitution.................................................................................................................................17	
  
Figure	
  22:	
  Substitution	
  Array....................................................................................................................17	
  
Figure	
  23:	
  Index	
  Info.....................................................................................................................................17	
  
Figure	
  24:	
  Most	
  Frequent	
  Template	
  Used ...........................................................................................18	
  
Figure	
  25:	
  Second	
  Most	
  Frequent	
  Template	
  Used ...........................................................................19	
  
Figure	
  26:	
  Nested	
  Template.......................................................................................................................19	
  
	
  



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   4	
  

1 Introduction 
Microsoft’s security event log is a rich source of information about the activity happening on 

a computer, including which programs were run, what files those programs interacted with, and what 
network connections they made. While Windows includes the Event Viewer program to view the 
contents of the security event log, this program is cumbersome to use, especially when analyzing 
large log files. So there exists a tremendous gap between the analysis possibilities provided by the 
rich event log content and the capabilities provided by built-in Event Viewer application, and 
surprisingly there are few third-party tools to fill that gap. 

One potential reason for the gap is that Microsoft changed the event log format between 
Microsoft XP and Microsoft Vista (which is also used in Windows 7), and there is very little 
documentation available describing the new format. Tools and knowledge developed for analyzing 
Windows XP and earlier Windows operating systems do not transfer easily to the new log format. 

This paper begins to address the analysis tool gap by providing a detailed description of the 
current Microsoft Windows event log format. Developers should be able to use the information in this 
paper to write their own event log parsers on top of which they can build useful types of analysis 
tools. We have used the information in this paper to build our own C++ parser, and we are currently 
building analysis tools that leverage techniques we originally developed for analyzing the BSM audit 
trails available for Mac OS X, Solaris, and FreeBSD. 

There are a couple of caveats that we need to cover. 

First, in developing this paper we did not examine any internal Microsoft documentation 
describing their event log format. We did not look at any Microsoft source code. And we did not talk 
to any Microsoft developers about their event log format. Part of our reason for taking this approach 
was to avoid any non-disclosure issues. But this means that there remain a few gaps in our knowledge 
of the event log format. In particular, there are several byte sequences for which we can find no 
purpose. They do not appear to effect the parsing of the data, so we simply flag them in the 
description. 

Second, the completeness of our reverse engineering is limited by the test sets we generated. 
We do occasionally encounter new syntax as we parse new data files, so we cannot claim that the 
format presented in this paper is 100% accurate and complete. 

Third, since Microsoft has not documented the event log format, this certainly gives them 
room to modify the format at any point with no notification. Just as using undocumented, private 
APIs in an operating system is risky and may result in your code breaking the next time the vendor 
updates the operating system, using an undocumented file format carries the risk that an update by the 
vendor may break your analysis code. 

Fourth, throughout this paper we refer to the “security event log” as an “audit trail” because 
this is the name by which this data has been referred to throughout the rest of the computer industry 
for decades. 

The rest of this paper is divided into the following sections: 

Section 2 introduces a number of concepts necessary for understanding the rest of the audit 
trails. This includes a high-level view of the audit file format (Section 2.1), how Microsoft optimized 
space by use of XML templates and string reuse (Section 2.2), and a number of miscellaneous notes 
such as Microsoft’s multiple encoding techniques for strings (Section 2.3). 

Section 3 provides the detailed structure of the audit trail format and is the heart of the paper. 
We broke down the file format into a Backus Normal Form (BNF) like specification, but we took 



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   5	
  

some liberties since the format is clearly not context free. For this paper we used a syntax diagram (or 
railroad diagram) approach because we felt it was easier to understand than a pure textual 
representation. 

Section 4 describes some of our testing we conducted to give us a measure of confidence that 
our analysis of the format is correct. Since our analysis did not rely on any specification or source 
code from Microsoft, our confidence must be tempered since it is limited by the amount of test we 
generated. 

Section 5 provides our conclusions and some closing remarks. 

Finally we would like to extend a special appreciation to Andreas Schuster for writing the 
paper “Introducing the Microsoft Vista event log file format” [Schu 07] without which we would not 
have even attempted to start this project. Anyone using this paper for the purpose of writing their own 
parsers should probably have Schuster’s paper next to them as well. 

2 Broad Concepts 
2.1 File architecture 

Windows 7’s audit trail format can be visualized as two systems with a mapping between 
them (see Figure 1). At one level is a very limited in RAM memory model containing a file header 
and a single chunk. The chunk contains the actual audit records. At a second level is a potentially 
very large file memory model (the size can be configured manually) containing a single file header 
and a potentially huge number of chunks. The file header in memory always maps to the file header in 
the file. However, the chunk in memory maps to only one chunk in the file at a time. Once the chunk 
in memory fills up, it is cleared, and then it is mapped to the next chunk on the file. In other words, 
the chunk in memory maps to one chunk in the file, and then later it maps to a different chunk, and so 
on.  

	
  
Figure 1: The Chunk Model 

When the last chunk in the file is reached and fills up, depending on how the audit policy is 
set, the audit system can remap the in-memory chunk back to the first chunk and overwrite its 
contents. In other words, the chunks are treated as a circular buffer. There are two results from this 
policy. First, earlier audit records are permanently lost. And second, the earliest audit records 
available in the file may not be in first ones in the file. If you want to analyze audit records in the 
order that they were produced, you need to first determine which chunk in the file is the oldest. 

Each chunk is completely self-contained. All information needed to reconstruct the audit 
records in that chunk (e.g., template definitions) is in the chunk. Each chunk is 64K in length and 
typically holds around 100 audit records. 

2.2 Space Optimizations 
Microsoft’s audit records are essentially XML objects. XML is a language that is somewhat 

easy for humans to read and somewhat easy for computers to parse, but the price to support both 
computer and human readability is space inefficiency. For small data sets this may not be an issues, 
but when thousands or millions of records need to be archived, this becomes a problem. 

File Header Chunk Chunk Chunk

Memory

File

File Header Chunk



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   6	
  

Microsoft addresses this inefficiency in two primary ways. First, Microsoft uses templates to 
reduce XML structural redundancy across records. Second, Microsoft uses string pointers to reduce 
redundancy within template definitions. Furthermore, to further reduce space, templates and strings 
that are never used in a chunk are not defined in a chunk. Since the audit system cannot tell ahead of 
time which templates and strings will be needed in the chunk, it uses a just-in-time strategy where the 
aren’t defined until the very first time they are used. We cover these optimization techniques in the 
following sections. 

2.2.1 XML Templates 
Microsoft’s audit system uses templates to remove redundancy across records. This is very 

important since the audit data consists of a large number of very similar small XML objects (i.e., each 
audit record). Any system that generates large numbers of repeating data chunks (e.g., a sensor 
generating regular data reports) can benefit from such an optimization. 

Figure 2 illustrates the use of templates to reduce redundancy. On the left side of Figure 2 are 
two pseudo audit records in an XML format. Each record begins with the “EventData” subtree. In the 
first record user “Todd” is running the program “mspaint.exe”, and in the second record “Todd” is 
running the program “hackme.exe”. Most of the text of the two records is the same between both 
records, consisting of XML element and attribute names (e.g., “EventData”, “Data”, and “Name”). 

A template essentially extracts the fixed part of the XML subtree and inserts placeholders in 
the locations that actually change. On the right side of Figure 2 is a template representing the 
“EventData” subtree. There are three placeholders labeled (1), (2), and (3) in the template. Following 
the template definition are two substitution arrays containing the data that should be placed in the 
appropriate positions in the template. For example, a program that reads the audit trail recreates the 
first audit by taking the template and inserting “Todd” in placeholder (1), “mspaint.exe” in 
placeholder (2), and 321 in placeholder (3). Once the template is defined, each subsequent audit 
record of the same data simply inserts the substitution array data into the audit trail. 

	
  
Figure 2: Template Definition 

2.2.2 String Reuse 
Microsoft’s audit system also removes redundancy within template definitions by using string 

pointers. Figure 3 illustrates the problem the audit system addresses. On the left side in an example 
template developed in the previous section. As the grey highlights show, many of the strings are 
simply repeats of strings used earlier. The audit system removes this redundancy in element and 
attribute names by replacing subsequent use of a string by a pointer back to the original string. For 
closing element tags, the audit system removes the string altogether and simply uses a close element 
token (discussed later). The name in the closing element tag can be removed because in well-formed 
XML the name is not needed if you track the nesting of XML element names. 

"Todd", "mspaint.exe", 321
"Todd", "hackme.exe", 322

XML Template with Substitution ArraysNormal XML

<EventData>
<Data Name="user">Todd</Data>

</EventData>

<Data Name="program">mspaint.exe</Data>
<Data Name="processiID">321</Data>

<EventData>
<Data Name="user">Todd</Data>

</EventData>

<Data Name="program">hackme.exe</Data>
<Data Name="processiID">322</Data>

<EventData>
<Data Name="user">(1)</Data>

</EventData>

<Data Name="program">(2)</Data>
<Data Name="processiID">(3)</Data>



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   7	
  

The right side of Figure 3 shows the template definition after the redundant strings are 
removes. A string pointer is visually represented by an asterisk, ‘*’, and the close element token is 
visually represented by “</>”. 

	
  
Figure 3: Removing String Redundancy in Templates 

2.2.3 Just-in-time Redundancy Removal 
Microsoft’s audit system could simply place all possible strings and template definitions at 

the front of a chunk, and then all audit records could simply be substitution arrays that begin with a 
pointer to its corresponding template. However this would probably be a waste since most templates 
won’t be referenced in any given chunk. To avoid this waste, the audit system uses a just-in-time 
strategy for defining strings and templates where strings and templates are not defined until the first 
time they are needed. 

A side effect of this just-in-time approach is that strings and template definitions are spread 
throughout the chunk. To find these strings and templates, the audit system includes a 64-bucket 
string table followed by a 32-bucket template table at the beginning of the chunk. Each bucket is a 
pointer to a string structure or template definition in the chunk. If more than one string structure or 
template definition hashes to the same bucket, the bucket points to the most recently added object 
(string structure or template) in the chunk, and then that object includes a pointer to the previously 
most recently added object that hashed to the same bucket. This is one of two most common ways to 
handle hash table collisions. 

For example, Figure 4A shows a string table after two string structures have been inserted in 
the chunk data stream.  When the third string structure needs to be inserted, it turns out that is hashes 
to the same string table bucket. To address this, the third string structure’s “next pointer” points to 
str1, and then the hash table bucket is set to str3. 

	
  
Figure 4: String Table and Linked List 

2.3 Few More Notes 
We have several more observations before diving into the details of the audit trail format. 

2.3.1 XML Tokens 
Certain XML elements are encoded as tokens and not their character values. For example, for 

the start of an XML element, the ‘<’ character is encoded as the hexadecimal value 0x01. And as 
mentioned previously, all close elements (e.g., “</foo>”, “</bar>”, and “</snafu>”) are all 

Normal Template Template with String Pointers

<EventData>
<Data Name="user">(1)</Data>

</EventData>

<Data Name="program">(2)</Data>
<Data Name="processiID">(3)</Data>

<EventData>
<Data Name="user">(1)</>

</>

<* *="program">(2)</>
<* *="processiID">(3)</>

str 2str 1

string hash buckets

str 3 str 2

str 1

string hash buckets

A B



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   8	
  

represented by a single close token, the hexadecimal value 0x04. Figure 5 shows the token encoding 
IDs for these XML elements. 

	
  
Figure 5: XML Token IDs 

2.3.2 String Encodings 
Character strings are encoded in three different ways in the audit trail. In general, a character 

is a two-byte value (UTF-16 little endian byte order), so the ASCII character ‘Y’, with the 
hexadecimal value of 59 is encoded as the following two bytes: 

59 00 

In our figures throughout the rest of this paper, a block labeled “char” represents a two-byte 
character. The “length” field for character strings is a two-byte number, but its interpretation depends 
on where the string is being used. Figure 6 shows the three types of string encodings. Each encoding 
is described below. 

	
  
Figure 6: Strings 

2.3.2.1 String Format A: Template Structural Definitions 
Strings used in template structural definitions (i.e., XML element names and attribute names) 

are embedded in a string structures. If the same string is used more than once in a template structural 
definition within a single chunk, subsequent uses simply point to the original use, thus, in theory, 
saving space. Inside the string structures, the string is defined as shown in String A of Figure 6. Here, 
the “length” field is a two-byte number and only counts the primary 2-byte character and does not 
include the 2-byte null terminator character. For example, “YES” is encoded in 10 bytes: 2 for the 
length (in this case, the value is 3), 6 for the characters ‘Y’, ‘E’, and ‘S’, and 2 zero bytes for the 
NULL terminator: 

03 00 59 00 45 00 53 00 00 00 

2.3.2.2 String Format B: Template Value Field 
Strings used in template definitions for attribute values (as opposed to attribute names) and 

XML child values (as opposed to XML sub-trees or substitution information) are defined as shown in 
String B of Figure 6. It is similar to String A except there is no NULL terminator. Here, the “length” 
field is a two-byte number and counts the number of characters. For example, “YES” is encoded in 8 
bytes: 2 for the length (again, with a value of 3) and 6 bytes for the characters: 

03 00 59 00 45 00 53 00 

< />bar

0x01 0x02 0x04 0x01 0x03

< > </foo>foo children

length char char char

A

B

C

S Elength char char char null

S E

S Echar char charlength

D S Echar char char null



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
   9	
  

2.3.2.3 String Format C: Substitution Array Value 
Strings embedded in substitution arrays are defined differently. First, as indicated in String B 

of Figure 6 the length field is not inline with the actual string. As shown in the Substitution Array 
Section, the length field is defined in the array index prior to the actual values. Second, the “length” 
field, while still a two-byte number, now represents the total number of bytes and not the number of 
2-byte characters.  For “YES” the length is 6 instead of 3. 

06 00 … 59 00 45 00 53 00 

2.3.2.4 String Format D: Array of Strings in Substitution Array Values 
In addition to the audit system recording a single string in the value field of a substitution 

array, sometimes it records an array of strings. In this case the length field listed in the substitution 
array’s index table has nothing to do with the length of any particular string in the array of strings but 
the combined length of all the strings. The individual strings are encoded as String D in Figure 6. 
There is no length field. The 2-byte NULL terminator identifies the end of the string. There is no 
indicator for the end of the array. For “YES” the encoding is: 

59 00 45 00 53 00 00 00 

2.3.3 Length Fields 
Throughout the audit file there are many “length” fields; unfortunately the semantics of these 

fields vary depending on the context. As already mentioned, a “string length” may be the total 
number of bytes, the number of 2-byte characters, or the number of 2-byte characters but not 
including a 2-byte NULL terminator. In some structures, the length field in a structure may refer to 
only the remaining bytes of the structure, but in other structures, the length field may also refer to all 
the preceding bytes of the structure as well. We will explicitly state what the length field refers to in 
each appropriate section. 

2.3.4 Pointers 
All references to “pointers” in this paper refer to addresses relative to the beginning of a 

chunk. For example, if a pointer has the value of 1203, it is referring to the 1204th byte in the chunk. 
The first byte has an address of 0. 

2.3.5 Data Types 
Throughout the audit data Microsoft frequently references a “type” field. Locations include 

the value portion of an attribute name-value pair, substitution information in templates, substitution 
array index information, and an element’s children values. The information about these types in the 
table below was taken from Microsoft’s web site1. There are a few additional notes called out in the 
description field. 

Name Value Description 
EvtVarTypeNull 0x00 Null content that implies that the element that contains the content 

does not exist. (Note: In substitution arrays most index 
information marked as Null have zero length, but that is not 
always the case.) 

EvtVarTypeString 0x01 A null-terminated Unicode string. (Note: As discussed above, do 
not assume the string is null-terminated.) 

EvtVarTypeAnsiString 0x02 A null-terminated ANSI string. 
EvtVarTypeSByte 0x03 A signed 8-bit integer value. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 http://msdn.microsoft.com/EN-US/library/aa385616.aspx 



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  10	
  

EvtVarTypeByte 0x04 An unsigned 8-bit integer value. 
EvtVarTypeInt16 0x05 An signed 16-bit integer value. 
EvtVarTypeUInt16 0x06 An unsigned 16-bit integer value. 
EvtVarTypeInt32 0x07 A signed 32-bit integer value. 
EvtVarTypeUInt32 0x08 An unsigned 32-bit integer value. 
EvtVarTypeInt64 0x09 A signed 64-bit integer value. 
EvtVarTypeUInt64 0x0A An unsigned 64-bit integer value. 
EvtVarTypeSingle 0x0B A single-precision real value. 
EvtVarTypeDouble 0x0C A double-precision real value. 
EvtVarTypeBoolean 0x0D A Boolean value.  
EvtVarTypeBinary 0x0E A hexadecimal binary value. 
EvtVarTypeGuid 0x0F A GUID value. 
EvtVarTypeSizeT 0x10 An unsigned 32-bit or 64-bit integer value that contains a pointer 

address. 
EvtVarTypeFileTime 0x11 A FILETIME value. 
EvtVarTypeSysTime 0x12 A SYSTEMTIME value. 
EvtVarTypeSid 0x13 A security identifier (SID) structure 
EvtVarTypeHexInt32 0x14 A 32-bit hexadecimal number. 
EvtVarTypeHexInt64 0x15 A 64-bit hexadecimal number. 
EvtVarTypeEvtHandle 0x20 An EVT_HANDLE value. 
BinaryXmlStream 0x21 (Note: Not documented, but is a nested Binary XML Stream.) 
EvtVarTypeEvtXml 0x23 A null-terminated Unicode string that contains XML. 

2.3.6 Graph Key 
Figure 7 is the key for graphs used through Section 3. The primary elements are: 

• Start and end tags – Parsing for each block begins at the start tag and finishes at the end 
tag. 

• Leaf – Rectangles represent a leaf in the graph tree; it is not expanded later on. 
• Subtree – Capsules represent an intermediate node in the graph tree that is expanded in 

another section. 
• Length – For leafs the length (i.e., number of bytes) should be known and are listed 

above the leaf. Sometimes the subtree’s length is also known, so the length is shown 
above it as well. 

• Value – For some leafs the value is predetermined. This is usually the case for flags 
indicating how to interpret the following bytes. In these cases, the hexadecimal value is 
shown below the leaf. 

• Look ahead – Some pathways have a value written above them. If you look ahead at the 
next byte in the audit file, this value will often tell you which path to take when parsing 
the data file. These values that determine which path to take are written above the path. 
These look ahead values are not consumed when parsing here (hence the term “look 
ahead”). 

• Path joins and splits – graphs use small circles to simplify the graphs, usually by 
collapsing the number of arcs that would otherwise be needed. 

	
  



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  11	
  

	
  
Figure 7: Graph Key 

3 Audit Trail Format 

	
  
Figure 8: File Format 

Figure 8 is the top level of the graph. A Windows audit trails consists of a fixed sized header 
followed by number of fixed sized chunks. All the information in a chunk is self-contained and does 
not require any information from any of the other chunks. 

3.1 File Header 

	
  
Figure 9: File Header 

Figure 9 is the fixed sized file header at the beginning of the audit trail. Some of the 
information (e.g., current chunk and next record) is primarily useful when the audit file is still being 
actively used to record audit date. 

• Magic string – The file begins with 8 bytes that spell out the ASCII string “ElfFile” 
followed by a null-terminator byte. 

• Not used – The next 8 bytes, as far as we can determine, are not used for anything. 
• Current chunk – This is the index to the current chunk in the file that the audit system is 

currently writing to. This seems primarily useful when watching life audit data. 
• Next record – This is the record of the next audit record to be written. 
• Header size 1 – The header includes two size fields. This first one represents the size of 

the header that is actively used. 
• Minor version & major version – these values specify the audit file format version. 
• Header size 2 – This size fields specifies the total size of the header, including the 3,968 

bytes that are currently not used. 
• Not used – A large block of bytes currently unused. 
• Flags – This identifies information about the current state of the audit file. 

S
1 byte

leaf
05

subtree 1

E03
02

subtree 2

start end

value

length

path join
or split

look ahead

ES file header chunk chunk
4K bytes 64K bytes 64K bytes

chunk count

E

ElfFile

minor version
2 bytes

major version
2 bytes

header size 2
2 bytes

chunk count
2 bytes

not used
76 bytes

flags
4 bytes

checksum
4 bytes

not used
3968 bytes

S magic string
8 bytes

current chunk
8 bytes

next record
8 bytes

header size 1
4 bytes

not used
8 bytes

08  00  00  00

00  10  00  00



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  12	
  

• Checksum – Integrity check on the content of the data. 

3.2 Chunk 

	
  
Figure 10: Chunk Structure 

Figure 10 is the overall structure of a chunk. It begins with a fixed sized chunk header 
followed by fixed sized string and template hash tables. Following these structures are the actual audit 
records. 

• Chunk header – This is a fixed size header for the chunk. It is useful for determining how 
many audit records are in the chunk, and if this is the active chunk for an active audit file, 
it points to where the next audit record will be written. 

• String table – This is a hash table of 64 pointers to string structures distributed in the 
audit records. 

• Template table – This is a hash table of 32 pointers to audit record templates distributed 
in the audit records. 

• Audit record – An audit record records an event that occurred on the system. It will 
always include a substitution array, and it may include template definitions. 

3.2.1 Chunk Header 

	
  
Figure 11: Chunk Header 

Figure 11 is the fixed header at the beginning of a chunk. The audit system uses two different 
counters for audit records. The first is counter for records written into the file. For example, the first 
audit record would have the value 1.  The second is a global counter independent of the audit file. For 
example, for this counter (described in the figure as a “record ID”), the first audit record written to the 
file may have the number 314,159. Because of these two different counters, the chunk header keeps 
tracks of four counters: the file counter and global counter for the first audit record in this chunk and 
the file and global counter for the last record in this chunk. 

• Magic string – The file begins with 8 bytes that spell out the ASCII string “ElfChnk” 
followed by a null-terminator byte. 

• First record of file – the file counter for the first audit record in this chunk. 
• Last record of file – the file counter for the first audit record in this chunk. 
• First record ID – the global counter for the first audit record in this chunk. 
• Last record ID – the global counter for the last audit record in this chunk. 
• Header size – size of the chunk’s header. 
• Ptr to last rec – offset in this chunk to the beginning of the most recent audit record 

written in this chunk. 

ES chunk header string table template table
128 bytes 256 bytes 128 bytes

audit record audit record

ElfChnk

Eunknown
4 bytes

flags
4 bytes

unused
64 bytes

checksum
4 bytes

S magic string
8 bytes

first record of file
8 bytes

last record of file
8 bytes

first record ID
8 bytes

last record ID
8 bytes

header size
4 bytes

ptr to last rec
4 bytes

ptr to next rec
4 bytes

08  00  00  00



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  13	
  

• Ptr to next rec – offset in this chunk to the location where the next audit record will be 
written. 

• Unknown – a sequence of (so far) non-zero bytes the purpose of yet we don’t know. 
• Unused – padding. 
• Flags – additional details about the chunk’s state. 
• Checksum – Integrity check on the content of the data. 

3.2.2 String and Template Tables 

	
  
Figure 12: String and Template Tables 

The string and template tables can be used to identify all the templates and strings used in 
those templates in this particular chunk. Each pointer is an offset from the beginning of the chunk. 
See Section 2.2.3 for more details. 

3.2.3 Audit Record 

	
  
Figure 13: Audit Record 

Figure 13 is the top-level description of an audit record. It consists of some administrative 
data and the beginning and ending with the meat of the audit record in the Binary XML Stream. 

• Magic string – the record begins with two asterisks (‘*’, ASCII 0x2A) followed by two 
zero bytes. 

• Length – the length of the entire audit record, including these four bytes and the four 
bytes of the magic string. 

• Record ID – the audit system’s global counter for this audit record. 
• Timestamp – time this event took place. 
• Binary XML Stream – the heart of the audit record. 
• Padding – optional padding. Sometimes there is random data in this padding. 
• Length – the length of the entire audit record. This is the same value previously listed as 

“length”. By putting the value at the front and end of the audit record analysis code can 
easily move forwards and backwards through the audit trail. 

ES
4 bytes

64

pointer pointer ES
4 bytes

32

pointer pointer
string table template table

S
4 bytes

magic string length record ID timestamp

padding lengthBinary XML Stream

4 bytes 8 bytes 8 bytes

4 bytes

00 00

E



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  14	
  

3.2.4 Binary XML Stream 

	
  
Figure 14: Binary XML Stream 

Figure 14 is the standard binary XML representation of an audit record. While Microsoft may 
have been inspired by other binary implementations of XML such as [Bruc 06], we are not aware of 
any other implementations that are just like this one. There are also two paths from the start tag: one 
leading directly to flag 1 and eventually to flag 2, the other jumping directly to flag 2. In almost every 
instance, the first path (flag 1 then flag 2) is followed. However, there are some cases where the 
second path is followed. We have not determined how to interpret these two different paths. 

• Flag 1, flag 2, & flag 3 – These are, according to [Schu 07], the tokens 
StartOfBXmlStream, TempateInstance, and EndOfBXmlStream respectively. 
Unfortunately, we see the TemplateInstance token whether or not a template follows, and 
as mentioned some binary XML streams do not begin with the StartOfBXmlStream. 

• Unknown 1 – Following the 0x0F flag are a sequence of bytes whose purpose is 
unknown, but they are always the same value. They may represent version numbers. 

• Unknown 2 – Following the 0x0C flag is byte whose purpose is unknown; however, the 
value is always the same. 

• Template ID – Each template has a unique ID. This template ID will be the same across 
all chunks. Each audit record consists of at least one template and one substitution array 
that are combined to create a full XML object. 

• Template ptr – pointer to the template definition in the chunk. If address of this pointer 
immediately follows, then the template definition immediately follows. Otherwise, the 
substitution array immediately follows. 

• Template definition – the definition of the XML template used by this (and possibly 
subsequent) audit record(s). 

• Substitution array – This contains the values that will be inserted into the previously 
identified template. 

3.2.5 Template Definition 

	
  
Figure 15: Template Definition 

Figure 15 is the template architecture. It consists of some administrative items at the 
beginning and ending, but the heart of the definition is the XML tree rooted at the element node. 

S

1 byte
flag 1 unknown 1

template definition

3 bytes

0F 01  01  00 1 byte
flag 2 unknown 2

1 byte

0C 01

0F

0C
4 bytes

template ptr
4 bytes

template ptrtemplate ptrtemplate ID

substitution array
1 byte
flag 3

00
E

S
1 byte
flag 1 unknown
0F 01  01  00

4 bytes
template ptr

element node
1 byte
flag 2

00
E

GUID length
16 bytes 4 bytes 3 bytes



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  15	
  

• Template ptr – This is the “next” pointer to another template definition that hashed into 
the same hash table entry. This is used to form a linked list of template definitions. If this 
value is zero, there are no more template definitions to follow. 

• GUID – global identifier for the template. The first four bytes are the same as the 
template ID in Section 3.2.4. 

• Length – Number of bytes remaining in the template definition. It does not include this 
length field or the previous 8 bytes. 

• Flag 1 & unkown – According to [Schu 07] this is the StartOfBXmlStream token. It is 
always followed by the same three bytes, the purpose of which we do not know. 

• Element node – root of XML tree. 
• Flag 2 – According to [Schu 07] this is the EndOfBXmlStream token. 

3.2.6 Element Node 

	
  
Figure 16: XML Element Node 

Figure 16 is the basic XML element. As an example of what this looks like textually see 
Section 2.2.1. 

• Flag 1, flag 2, flag 3, and flag4 – These are the XML tokens. For Flag 1, if the upper 4 
bits are set to 4 (i.e., 0x41), then there is at least one attribute. 

• Unknown – These two bytes are used inconsistently but as far as we can tell they can be 
safely ignored. In some templates that have a substitution index for a child, these two 
bytes have the substitution index as well (i.e., it is redundant). But this is not always the 
case. 

• Length – number of bytes remaining in the node definition. 
• String ptr – pointer to the string structure holding the XML element’s name. If address of 

this pointer immediately follows, then the string structure immediately follows. 
• Attributes – the XML’s attributes (if any). 
• XML children – one or more XML children. This can include values that don’t change, 

other XML subtrees, and substitution information. 

3.2.7 String Structure 

	
  
Figure 17: String Structure 

S
1 byte
flag 1

01 | 41
length
4 bytes2 bytes string structure

string ptrunknown

1 byte
flag 2

03
E

1 byte
flag 3

02

1 byte
flag 4

04

attributes

XML children

03

02

03

02

4 bytes

S Echecksumstring ptr count
00  00

4 bytes 2 bytes 2 bytes

count

2 bytes
null

2 bytes
char

2 bytes
char



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  16	
  

Figure 17 is the string structure. It allows us the audit system to only write a string once into a 
chunk. Every time the same string is needed in a template, it just points back to this definition. 

• String ptr – This is the “next” pointer to another string structure that hashed into the same 
hash table entry. This is used to form a linked list of string structures. If this value is zero, 
there are no more string structures to follow. 

• Checksum – This is checksum of the string. The string table bucket this string hashes to 
can be found by performing “mod 64” on this checksum. 

• Count – This is the number of characters for the string. 
• Char – This is a 2-byte, UTF-16 little endian character. 
• Null – This is the string terminator. 

3.2.8 Attributes 

	
  
Figure 18: Attributes 

Figure 18 is the attribute name-(value or substitution) pairs for an XML element. 

• Length – the number of remaining bytes for the attribute section. 
• Flag – This value is actually 0x06 with the upper 4-bits set to 4 if there are more 

attributes to follow this one. [Schu 07] defines this as the Attribute token. 
• String ptr – This is the pointer to the string structure holding the attribute’s name. If the 

address of this pointer immediately follows, then the string structure immediately 
follows. 

• Value – This is a fixed value for the attribute. 
• Substitution – This is the substitution index information. 

3.2.9 XML Children 

	
  
Figure 19: XML Children 

Figure 19 represents and XML element’s children. There can be a combination of values, 
substitutions, and other element subtrees. When the look ahead byte is 0x04, the end of the children 
list has been reached. 

• Value – This is a fixed value that doesn’t change. 
• Substitution – This is information that will be substituted here. It can be a simple value or 

an entire XML subtree that will be substituted later. 
• Element node – This is an XML subtree. 

S length
4 bytes 1 byte

flag
06 | 46

string ptr
4 bytes

string structure value

substitution

E0E | 0D

05

value

substitution E

element node

0E | 0D

05

01 | 41
S

04



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  17	
  

3.2.10 Value 

	
  
Figure 20: Value 

Figure 20 shows how fixed values are defined in a template. 

• Flag – This will always be the value 0x05. 
• Type – This is the data’s type. See Section 2.3.5 for the various values. 
• Length – This is the “length” of the data. If the type field is 0x01 (UTF-16 string), then 

the length is the number of 2-byte characters and not the number of bytes (see Section 
2.3.2.2). We have not observed other types other than 0x01, so we don’t know how to 
interpret the length field in these other cases. 

• Data – This is some number of bytes. 

3.2.11 Substitution 

	
  
Figure 21: Substitution 

Figure 21 is the substitution information in a template definition. 

• Flag – This is the flag that indicates this is substitution information. If the flag is 0x0E 
this is option substitution (i.e., the substitution array may have no value for this field). If 
this value is 0x0D this is a normal substitution. 

• Index – This index into the substitution array whose value will be inserted here. For 
example, if this value is 7, then the 7th data element in the substitution array will get 
inserted into this spot in the XML template. 

3.2.12 Substitution Array 

	
  
Figure 22: Substitution Array 

Figure 22 is the substitution array. This contains the actual data for the audit record. 

• Count – This is the number of elements in the substitution table. 
• Index info – This is meta information about the data. 
• Data – This is the actual data that is inserted into template. 

3.2.13 Index Info 

	
  
Figure 23: Index Info 

Figure 23 is the meta information about the data in the substitution array. 

S length
2 bytes1 byte

flag
05

1 byte
type Edata

S
1 byte

flag
0E | 0D

2 bytes
index E

1 byte
type

S count
4 bytes

index info index info Edata data

countcount

S
2 bytes
length E

1 byte
type

1 byte
null
00



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  18	
  

• Length – This is the number of bytes of data for this particular substitution. This value 
may be zero. 

• Type – This tells how those bytes should be interpreted. This field should match the type 
field in the template’s substitution information (see Section 3.2.11). The range of values 
for this field is listed in Section 2.3.5. A note of caution, usually when the type field is 
NULL (0x00), then the length field is usually zero, but this is not always the case. 

• Null – This is an unused byte. 

4 Testing 
To test our analysis of the audit trail format we built a parser in C++ running on a Mac (Mac 

OS 10.6.4). Clearly no Windows APIs were used to help parse the data. We turned on all of the audit 
flags available in Windows 7. For activity we booted and shutdown the system several times, ran a 
few programs, and performed some network activity using Internet Explorer. We then saved the 
existing audit file and exported it to a Mac for analysis. Some of the basic statistics include: 

Statistic Value 
File size 1,076,957,184 bytes 

Number of chunks 16,419 
Number of records 1,426,254 

Number of event types 50 
Number of templates 48 

Figure 24 shows the template that was most frequently used by audit records – over 99.99% 
of all records used this template. The fixed structure is shown (e.g., element and attribute names), and 
the fields to be filled in are shown as a number in brackets (optional field) or parentheses (required 
field). For example the “Provider” element includes an optional attribute named “Guid” that will be 
the in the 15th field in the substitution array. For this template, all fields are optional. Interestingly, the 
order of the fields in the audit records (i.e., substitution arrays) have nothing in common with the 
order in which they appear in the template.  For example, the “Correlation” element has two attributes 
that can be found in the 7th and 13th fields. The 17th field will be filled in with a nested substitution 
array. The template for this nested template will depend on the EventID. 

	
  
Figure 24: Most Frequent Template Used 

Figure 25 is the second most frequently used template, but it is always used as a nested value 
in another template. For example, 34.3% of audit records that use the template shown in Figure 24 

<Event xmlns=http://schemas.microsoft.com/win/2004/08/events/event>
    <System>
        <Provider Name=[14,0x01] Guid=[15,0x0F] />
        <EventID Qualifiers=[4,0x06]>[3,0x06]</EventID>
        <Version>[11,0x04]</Version>
        <Level>[0,0x04]</Level>
        <Task>[2,0x06]</Task>
        <Opcode>[1,0x04]</Opcode>
        <Keywords>[5,0x15]</Keywords>
        <TimeCreated SystemTime=[6,0x11] />
        <EventRecordID>[10,0x0A]</EventRecordID>
        <Correlation ActivityID=[7,0x0F] RelatedActivityID=[13,0x0F] />
        <Execution ProcessID=[8,0x08] ThreadID=[9,0x08] />
        <Channel>[16,0x01]</Channel>
        <Computer>WIN-5L6MN5BLMKU</Computer>
        <Security UserID=[12,0x13] />
    </System>
    [17,0x21]
</Event>



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  19	
  

have the template in Figure 25 embedded in their 17th field. Figure 26 shows how this second 
template is embedded into the first template. 

	
  
Figure 25: Second Most Frequent Template Used 

	
  
Figure 26: Nested Template 

5 Conclusions 
Windows 7 audit data can be a powerful tool for understanding a wide range of threats on 

your computer system. Unfortunately are very few tools available to analyze this data, and the 
Windows supplied tool, Event Viewer, has limited functionality. One reason that there are so few 
tools and so few people taking advantage of the capabilities provided by the audit trail is that the audit 

<EventData>
    <Data Name=SubjectUserSid>(0,0x13)</Data>
    <Data Name=SubjectUserName>(1,0x01)</Data>
    <Data Name=SubjectDomainName>(2,0x01)</Data>
    <Data Name=SubjectLogonId>(3,0x15)</Data>
    <Data Name=ObjectServer>(4,0x01)</Data>
    <Data Name=ObjectType>(5,0x01)</Data>
    <Data Name=ObjectName>(6,0x01)</Data>
    <Data Name=HandleId>(7,0x10)</Data>
    <Data Name=AccessList>(8,0x01)</Data>
    <Data Name=AccessMask>(9,0x14)</Data>
    <Data Name=ProcessId>(10,0x10)</Data>
    <Data Name=ProcessName>(11,0x01)</Data>
</EventData>

<Event xmlns=http://schemas.microsoft.com/win/2004/08/events/event>
    <System>
        <Provider Name=[14,0x01] Guid=[15,0x0F] />
        <EventID Qualifiers=[4,0x06]>[3,0x06]</EventID>
        <Version>[11,0x04]</Version>
        <Level>[0,0x04]</Level>
        <Task>[2,0x06]</Task>
        <Opcode>[1,0x04]</Opcode>
        <Keywords>[5,0x15]</Keywords>
        <TimeCreated SystemTime=[6,0x11] />
        <EventRecordID>[10,0x0A]</EventRecordID>
        <Correlation ActivityID=[7,0x0F] RelatedActivityID=[13,0x0F] />
        <Execution ProcessID=[8,0x08] ThreadID=[9,0x08] />
        <Channel>[16,0x01]</Channel>
        <Computer>WIN-5L6MN5BLMKU</Computer>
        <Security UserID=[12,0x13] />
    </System>
    <EventData>
        <Data Name=SubjectUserSid>(0,0x13)</Data>
        <Data Name=SubjectUserName>(1,0x01)</Data>
        <Data Name=SubjectDomainName>(2,0x01)</Data>
        <Data Name=SubjectLogonId>(3,0x15)</Data>
        <Data Name=ObjectServer>(4,0x01)</Data>
        <Data Name=ObjectType>(5,0x01)</Data>
        <Data Name=ObjectName>(6,0x01)</Data>
        <Data Name=HandleId>(7,0x10)</Data>
        <Data Name=AccessList>(8,0x01)</Data>
        <Data Name=AccessMask>(9,0x14)</Data>
        <Data Name=ProcessId>(10,0x10)</Data>
        <Data Name=ProcessName>(11,0x01)</Data>
    </EventData>
</Event>



Net Squared, Inc.  TR-2010-09-23 
	
  

	
   	
  20	
  

trail format is poorly documented. This goal of this paper is to provide a detailed analysis of the file 
format, so that engineers can build their own parsers of the data.  

We used Andreas Schuster’s paper [Schu 07] as a jumping off point and then performed our 
own exhaustive analysis of the binary data in the audit log. To avoid any risk of non-disclosure 
issues, we never looked at any Windows code during our analysis. One side effect of this data-only 
reverse engineering is that we had to guess at the meaning of some of the data, and in a few cases we 
could not understand why the field held particular values. However, so far these few instances have 
not had negative effects on our parsing of the data. 

6 References 
[Bruc 06] Craig Bruce, “Binary Extensible Markup Language (BXML) Encoding Specification”, 
Open Geospatial Consortium, Inc., OGC 03-002r9, 13 Jan 2006. 

[Schu 07] Andreas Schuster, “Introducing the Microsoft Vista event log file format”, Digital 
Investigation, Volume 4, Supplement 1, pp. 65-72, Sep 2007. 

  


