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1 Introduction

The Network Radar project performed for the Air Forces Research Laboratory (AFRL),
specifically Rome Labs, and the Defense Advanced Research Projects Agency (DARPA)
developed innovative approaches to building network sensors and innovative network sensor
technologies. The sensor technologies were bundled into a suite of applications called Network
Radar and delivered to Rome Labs and DARPA’s Technology Integration Center (TIC).

Several groups at Rome Labs and DARPA integrated portions of Network Radar into
their own security management systems. Projects that integrated Network Radar into their
systems include the Automated Intrusion Detection Environment (AIDE) Advanced Concept
Technology Demonstration (ACTD), the Extensible Prototype For Information Command and
Control (EPIC?), the Air Force Enterprise Defense (AFED) system, and the DARPA Cyber
Command System (CCS — actually the DARPA BAA 97-11 integration project went through
numerous name changes through the years).

While the entire Network Radar effort included efforts to build novel architectures used
to quickly assembling special purpose network sensors as well as a provide for a number of novel
analysis techniques, most people tried to pigeonhole our work as simply a network-based
intrusion detection system, and in the end, that is how most of the larger integration efforts used
our software. The central piece these organizations used as an intrusion detection system was an
application called nrat, so the technology behind that particular technology dominates this report.

Nrat, which stands for Network Radar Audit Trail, began life as a simple program to
generate an audit trail of network activity. The audit trail was written to a file. Later, other tools
would analyze this audit file. For example, if at some point someone notices that a classified
document was available on a public FTP server, the security administrator could search through
nrat’s network audit logs generated to determine who put the file there and who may have
downloaded the document.

Over the years, prodded by users at Rome Labs and DARPA, nrat evolved into a highly
configurable and interactive multi-purpose sensor that also includes intrusion detection
capabilities.

Nrat’s intrusion detection capabilities includes detecting known patterns in data streams
(string-based detection), access to tagged ports or tagged hosts, access to tagged remote
procedure call (RPC) functions, access to certain CORBA operations, and basic vertical and
horizontal scanning. Vertical scanning is accessing multiple ports on a single machine, and
horizontal scanning is accessing multiple machines. These were the capabilities DARPA used.

In addition to the basic intrusion detection capabilities listed above, nrat generates
detailed information about network activity including user names logging into services and
commands used in FTP and remote shells, detects users hopping across networks via telnet and
rlogin, and taps into and potentially terminates interactive network sessions such as telnet and
FTP. Also, Network Radar includes additional programs that add value to nrat’s results,
including the ability to generate transcripts of login sessions and send them to a remote security
management console. Rome Labs’ development groups exploited these features as well as the
basic intrusion detection features.

The information from all these capabilities is provided to remote systems via several
network servers. The network servers generate data in an ASCII format as well as a more
compact and versatile binary format. The ASCII-oriented servers can help in debugging nrat as
well as help developers learn the type and rates of information that might be sent to their security
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management stations.. To make sure nrat is generating what you think it should be, simply telnet
to the server port and watch the results in readable ASCII stream across your screen. Rome Labs
and DARPA primarily used the ASCII output. Later, with the help of C-based bridging software
we wrote, Rome Labs switched to the more efficient binary servers.

Nrat also serves as a research platform, allowing us to test new analysis approaches. One
example is that we added a stream analyzer to search for similar content crossing the network in
multiple connections. This technique could be useful for detecting a new attack tried against
multiple servers or a worm spreading across the network. In Section 4 we discuss this in detail
and describe how an early version of this technique tracked the Love Bug worm spreading
through Rome Labs.

Finally, all these features and more (e.g., what protocols are analyzed) are configurable
through over 70 switches that can be set in a file or overridden on the command line. A summary
of all these switches is provided in Section 6.1.

The following is a roadmap to the rest of this report. Section 2 introduces the reader the
Network Monitoring Framework, an extensible object-oriented toolkit for rapidly building
custom network monitoring applications. Section 3 goes into the details of pattern matching
systems (read: signature-based intrusion detection systems). It looks at some of the reported
problems with them, and then it shows several approaches we took with Network Radar to
address these problems. Section 4 introduces cluster-based detection. Network Radar also serves
as a research platform, and this section discusses one approach we took to detect (and potentially
thwart) fast spreading new attacks such as worms. Finally, Section 5 shows how to install
Network Radar, and Section 6 shows how to run the primary Network Radar application, nrat.

2 Network Monitoring Framework (NMF)

The Network Monitoring Framework (NMF) is a toolkit of C++ objects that can be
assembled into custom network analysis applications. Developers can also extend the set of
objects by subclassing any of the existing object classes, thus providing their own custom
functionality without the need to write an entire application.

The NMF was inspired by our earlier work developing the original Air Force Automated
Security Incident Measurement (ASIM) sensor, DISA’s Joint Intrusion Detection System (JIDS),
and the Lawrence Livermore National Laboratory’s Network Intrusion Detection System (NIDS).
These were originally all the same system, the UC Davis Network Security Monitor (NSM).

As the system started to be deployed by various groups, we found that different people
needed it to accomplish different tasks depending on their missions. Some people (site
administrators) deployed the sensor as originally designed, a long-term intrusion detection sensor
for an organization. These people would start the sensor running in one location, let the anomaly
detector build of profiles of common data paths, and identify and manage attacks as they occurred
over time. Another group (ASIM folks at Kelly AFB) deployed the sensor at a wide range of
sites to collect global-level intelligence about attacks and track large-scale trends. They would
typically not handle day-to-day attacks at a site. Other groups (DISA and AFCERT) would only
be called when an attack was discovered, and they would literally hop on a plane and fly to the
site that was attacked. These people knew what systems had been attacked, and they just wanted
to closely monitor those few systems, tap into live connections, and terminate the connection if
the attacker got too close to sensitive information. In the meantime, the group would open an
investigation and try to learn who was behind the attacks. Yet another group of people would use
the tool as perform forensics on a newly discovered attack.
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Unfortunately, a single tool did not, nor could not, perform all these different tasks well.
Thus we were motivated to develop the NMF. The ultimate goal was to custom build a specific
application that was tailored to each group’s needs. While in the end we did not build many
specific applications for different people, the NMF library still retains this capability, and the
complete framework is installed when a user installs the Network Radar application suite.

Figure 1 shows a subset of NMF objects that might be actively monitoring a network. At
the bottom is the PcapTap network tap. Taps are designed to read packets from various sources.
This PcapTap takes advantage of the libpcap library. We also have network taps for other
sources, including one to read packet files created by the Solaris snoop program. Above the tap
are four protocol layer objects; Ethernet Layer, IP Layer, TCP Layer, and UDP Layer. NMF also
supports an ICMP Layer object that is not shown. Each protocol layer is responsible for parsing
its part of the packet header and determining to which object the packet should be passed (e.g.,
the IP Layer can pass the data to either the UDP or TCP Layer). Each protocol layer also
supports any number of proxy classes. In this example, only the IP Layer has a proxy, the IP
Layer Attack Proxy. This particular proxy is tuned to detect attacks specific to the IP protocol
layer.

All of the objects just described, the tap, protocol object, and protocol proxy objects, are
created once at the beginning of the program. They are persistent throughout the run of the
program. The NMF also has a whole class of dynamic objects that are created on the fly to
analyze individual sessions. These are subclasses of NmfStream, and they do much of the novel
analysis for the Network Radar applications. In Figure 1 there are three TCP/IP sessions being
tracked by the TCP Layer. The right most session has a stack of five NmfStream objects
analyzing its data stream. At the bottom is the TcpStream which tracks when the connection
starts and stops, how much data and how many packets have been exchanged, and collects other
general statistics about a TCP/IP connection. The TcpStream object also removes any duplicate
data before passing the data to a higher level NmfStream object. After the data passes through
the TcpStream object it is handed to the TelnetStream object. This object removes the telnet
negotiation data from the stream and hands the modified data stream to the next NmfStream
object, LoginStream (see Section 3.3.3 for more information about the TelnetStream object). The
LoginStream identifies user names (and optionally passwords) used by the person trying to login.
The session data stream is then passed to the StringStream to identify strings in the data, and
finally the ThumbprintStream is handed the data to determine if this user is actually logged into
multiple connections. In all, NMF supports 36 different stream classes to perform various types
of analysis on network sessions.

If a developer thinks up a new novel analysis to perform on a connection, he only has to
subclass the NmfStream object, write the code specific to perform his analysis, and then link the
new object to an existing application like nrat (see Section 6). All the rest of the functionality for
a network sensor already exists, so this greatly accelerates the time to get a new analysis
technique in the field.

One example of this quick turn around in developing and deploying a new technology is
our experience with thumbprinting entire network sessions. We had not originally proposed
doing this research. In fact we had only thought about it while deploying Network Radar in the
field. However, we thought the technique could be useful for detecting the same attack in
multiple connections, and therefore identifying attacks we have never seen before. We rapidly
built a prototype and deployed it as part of nrat program, and it successfully detected and tracked
the Love Bug worm as it went through Rome Labs (see Section 4).

What is not shown in Figure 1 are a large number of supporting classes to create a
complete application. For example, NMF has classes to accept and manage incoming
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connections from clients such as security management servers. NMF has a large number of
report classes to notify other applications about specific events, and these report objects can be
serialize into a buffer, archived on disk, or transmitted across a network. It also has classes to
provide a general-purpose filter (or throttle) to prevent clients from being overwhelmed with
attack reports. In total, NMF has 278 different classes.

| Pea Sltream | | Thumbpr}nt Stream |
| EsMm lStream | | String lStream |
| Rx Stream | | Rx Stream | | Login IStream |
| RxSweam | | Buffer Steam || FTPSteam || Telnet Stream |
| upp Sltream | [ Tcp Stream | TCPStream | | TCP Stream |

A\
( UDP Layer ) ( TCP Layer )
AN 4
C IP Layer )—(IP Layer Attack Proxy )

C Ethernet Layer )

( Pcap’lfap )

Figure 1: Network Monitoring Framework

3 Pattern Matchers

3.1 Introduction

Probably the single most successfully deployed intrusion detection technology has been
the content-oriented signature detectors in network-based sensors!. That is, the sensors look for a
string in packet data. While other techniques such as specification-based detection® and
sequence-based detection’ have shown success in laboratory trials, they have not been
successfully adopted into operational environments. Network-based signature systems from the
Network Security Monitor (NSM) in 1991, commercial systems such as ISS’s RealSecure and
Cisco’s IDS series, and open source efforts such as Snort have dominated the intrusion detection
marketplace over the years.

However, despite the market success the technology has enjoyed, the approach is not
without its critics. The most frequent complaint is that the approach generates a large number of
false-positives. Another frequent criticism is that the approach cannot detect new attacks or
subtle variations in existing attacks.

" In addition to strings in packets’ payload, the term signature is often applied to examining the
protocol header fields. We are not addressing this type of signature here.

*C. Ko, M. Ruschitzka, and K. Levitt, “Execution Monitoring of Security-critical Programs in
Distributed Systems: A Specification-based Approach,” Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pp. 134-144.

’S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A sense of self for Unix
processes,” Proceedings of the 1996 IEEE Symposium on Computer Security and Privacy.
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Unfortunately, while the issues of false positives in particular and weaknesses in
network-based signature detection in general have been discussed a great deal, rarely do these
discussions focus on the fundamental issues. Throughout Section 3 we shed some light on these
issues, and we examine how Network Radar addresses some of them.

3.2 Signature Pyramid

Figure 2 shows a pyramid of issues that must be considered when analyzing the
performance of signature-based systems. The three areas, starting at the bottom, consist of (1) the
actual data analyzed by the signature system, (2) the engine (or algorithm) used to look for
patterns in the data, and (3) the actual pattern searched for in the data. On the left of the pyramid
the arrow indicates that at the top the actual signature is actually the least important component to
a system’s ability to detect an attack. On the right side of the pyramid the arrow indicates that the
data source is the hardest component to change and the signature is the easiest to change. We
explored each of components of this pyramid in detail below.

Least A\Easiest
Signature
Importance Signature Matching Engine Ease 'in
in Detection Changing
Data Source
Most v Hardest

Figure 2: Signature Pyramid
3.3 Data Source

The source of the data is the most important component in detection, but it is also the
hardest to change. In the next few section we look at some of the problems with respect to the
data source faced by network-based sensors such as Network Radar. In Section 3.3.1 we briefly
look at intractable problems with the data source that cannot be effectively solved. The problem
with increasing amounts of encrypted network traffic is of particular concern. In Section 3.3.2 we
examine a problem that most network sensors cannot address but which the Network Monitoring
Framework used by Network Radar handles easily: dealing with context. In Section 3.3.3 we
examine the problem of inline protocol data, specifically with respect to telnet connection.
Embedded telnet protocol data can prevent most network-sensors from detecting some patterns,
but Network Radar can modify the analyzed data stream to eliminate this problem.

3.3.1 Intractable Problems

If the attack is not visible in the data stream, no amount of work on a signature engine or
signatures will help in detecting the attack. For example, if a user is logged directly into the
computer from a terminal and attacks the system, there is simply no way for a network-based
sensor to detect the attack because no packets are generated. Also, if a site deploys a single
network sensor at the network perimeter (a common practice), but an attack is completely internal
and does not cross the perimeter (e.g., the attacker is an insider, which is a common problem),
then it is impossible for sensor to detect the attack. In short, unless the attack generates data that
the sensor can see, no sensor of any type can detect the attack.

In addition to the problem of no data, there is the problem of encrypted data. In the early
years of network-based intrusion detection, there simply was not much encrypted data. However,
at many sites today encrypted logins (e.g., via ssh) are more common than plain-text logins (e.g.,
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telnet and rlogin), and encrypted web traffic is growing rapidly. For example, at one Air Force
installation we monitored, all web servers on the inside of the firewall could only be accessed
through encrypted connections. A network-base sensor that searches for patterns in the data
stream will fail when looking for them in encrypted data streams. In other words, at this Air
Force site where access to internal web servers must be encrypted, a network sensor could not
detect attacks against these web servers.

3.3.2 Analyzing without Context

While the first two issues mentioned, lack of data and encrypted data, are effectively
intractable problems, there are other problems with network-based sensors that can be addressed.
One egregious error by a network sensor was a signature used by ISS’s RealSecure in the mid
1990s to detect attacks that exploited the DEBUG vulnerability in sendmail’. Turning this
signature on would flag as an attack any sendmail connection with the word “debug” anywhere in
the connection.

There were at least two major flaws with this signature. First, the DEBUG sendmail
vulnerability was a flaw first exploited by the Morris Worm in 1988. Probably by 1989 there
were almost no machines that still contained this vulnerability. By the late 1990s there were
almost certainly no attacks against this 1988 vulnerability, so the chances that the signature would
detect a real attack were effectively zero. All alerts of this attack would therefore be false
positives, and since the word “debug” is common in email, there would be a lot of alerts. The
lesson here is that over time, as an attack is no longer active on a network, signatures for the
attack should be retired.

The second flaw, and the one more directly related with our Network Radar work, is that
the RealSecure signature could not understand the context in which the string “debug” was used
in a sendmail connection. A sendmail connection has two phases: a command phase and a data
phase. The data phase is where the actual content of the email message is transmitted, including
header information such as the Subject line. The command phase is where the sendmail client
and sendmail server communicate prior to and after sending the contents of the actual email
message.

Figure 3, the transcript of actual data sent from a sendmail client to a server, illustrates
these modes. The areas in the grey boxes are the commands sent by the client. The text between
the grey boxes is the content that is delivered to the users’ mailboxes. An attack against the 1988
sendmail vulnerability would have sent the string “debug” during the command phase of the
connection (the grey boxes).

* This problem was told to us by Boeing engineers working with RealSecure.
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EHLO [128.120.56.19]

MAIL FROM:<todd@NetSQ.com>

RCPT TO:<todd@netsq.com> ¢ Command Phase

RCPT TO:<antoinette@netsq.com>

RCPT TO:<heberlei@netsq.com>

DATA

User-Agent: Microsoft-Entourage/10.1.0.2006

Date: Mon, 05 Aug 2002 10:20:43 -0700

Subject: Testing sendmail

From: Todd Heberlein <todd@NetSQ.com>

To: Todd Heberlein <todd@NetSQ.com>

CC: Antoinette Heberlein <antoinette@netsq.com>,
<heberlei@netsq.com>

Message-ID: <B97401FB.42AE%todd@NetSQ.com>

Mime-version: 1.0

Content-type: text/plain; charset="US-ASCII"

Content-transfer-encoding: 7bit

This is a simple test of the sendmail protocol. These words
are part of the email's body.

Todd

QUIT < Command Phase

Figure 3: Sendmail Commands and Content

RealSecure simply treated both types of data, command and content, equally, so it could
not distinguish between “debug” as a command and “debug” as simply part of an email message.
Network Radar can make this distinction through inline parsers.

An inline parser is a subclass of the NmfStream class (see Section 2). It is a stateful
object, and one is allocated for each connection to be analyzed. The object parses the data stream
and applies the appropriate analysis to the appropriate parts of the connection. While we did not
create a sendmail parser as part of the standard Network Radar distribution (we were not to
worried about the DEBUG attack), we did create one for web traffic (http) and one to capture
login information (user names and passwords entered at “login:” and “password:” prompts). The
http parser can distinguish between the primary command (GET, POST, and HEAD), the header
information, and any content sent along by the client (e.g., the form data sent with a POST
command). In our case, we applied thumbprints analysis to the URL supplied in a GET or POST
command.

To summarize this issue, while the necessary data to detect an attack may be available to
a network analyzer, in some cases the network analyzer may need to understand additional
context information about the data stream such as whether a sendmail connection is in command
or content modes. In short, the analyzer should parse the data and apply different types of
analysis to different portions of the connection. Most network analyzers such as RealSecure
cannot (or at least could not) do this, while Network Radar, through the use of inline parsers, can.
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3.3.3 Inline Protocol Data

Another data source problem faced by network sensors is that the data is not always
clean. That is, there is often additional data beyond the content you want to analyze embedded in
the data stream, and this additional data prevents a network analyzer from being able to detect the
content string. The most well known problem in this area is with telnet connections; however,
other protocols also have the problem.

Figure 4 illustrates the problem. Panel A shows the data from a telnet connection during
an initial login attempt. The periods indicate non-printable data bytes. These non-printable data
bytes, combined with the quotation marks, are part of the telnet negotiations that go on between
the client and server and are not displayed to the user. The NeXT operating system generates
more negotiation data than most, but all versions of telnet on all operating systems that we have
observed generate some telnet negotiation data. If you have seen transcript printouts of telnet
logins by sensors such as ASIM, you will probably have seen funny characters, especially at the
beginning of the connection. This funny data may have been telnet negotiation data.

If you are trying to look for a particular user logging in (e.g., heberlei), you might search
for the pattern “login: heberlei”. Unfortunately, in this case, that search would fail because the
telnet negotiation data in the middle of the pattern would prevent the match from being detected.
Likewise, our NmfStream object that extracts user names from interactive login programs such as
telnet would accidentally add all the negotiation data to the user’s login name.

Once again, however, because of the Network Monitoring Framework’s architecture, we
were able to construct an NmfStream object that strips the telnet negotiations data from the
stream before passing the rest of the data to other analyzers such as pattern matchers and login
name detectors. Network Radar can properly detect the string “login: heberlei”, and it can
generate transcript files without all the distracting telnet negotiation data in the middle of it (see
Figure 4, panel B). Other sensors cannot do this.

NeXT Mach (obi-wan) (ttyp2) NeXT Mach (obi-wan) (ttyp2)

login: heberlei
L login: .."...... heberlei Password:
...... Password:

Figure 4: Telnet Negotiation
3.4 Signature Matching Engine

After the availability and quality of the data, the next most important component in a
pattern matching system is the pattern-matching engine. There are at least three important
questions to ask about any pattern-matching engine:

*  What is the engine’s efficiency?
*  What are the engine’s requirements?
* How expressive are the patterns that run on the engine?

An engine’s efficiency is typically expressed in terms of how much work must be
performed for each byte of input it must process. For example, in some pattern matching
algorithms such as naive string matchers (e.g., strcmp()) and non-deterministic regular expression
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matchers, a single byte of network traffic might have to be analyzed several times. The engine’s
requirements include whether the entire pattern in the data stream must be in memory at the same
time for a match to occur and how much storage is required to encode the pattern. How
expressive the engine is describes how complex a pattern the system can handle. In general, this
has usually come down to either simple strings (used by most intrusion detection systems) or
regular expression.

While engine’s expressiveness usually comes down to simple strings vs. regular
expressions, we do want to touch on one additional point outside this current thread. Regular
expressions (considered the most powerful matcher in this line of analysis) only support context-
free pattern matching. Because our NmfStream objects are stateful (e.g., we can provide the
context), we can record additional state and create an even more powerful pattern matcher. For
example, we have an FTP stream analyzer that can apply regular expression matches to only
directory names accessed by a user (as opposed to any type of data) because we parse the FTP
protocol. So in effect, while in this discussion we talk about regular expressions being the most
powerful analysis technique (and more powerful than most used today), Network Radar has
already surpassed this.

In the following sections we look at four pattern matching engines. The first one, Boyer-
Moore, is used by the Snort intrusion detection system. Network Radar does not support this
algorithm, but it would be trivial for us to add it. At this point Boyer-Moore does not add any
advantage that we do not already have with the Knuth-Morris-Pratt algorithm we implemented.
The other three algorithms are all available in Network Radar.

3.4.1 Boyer-Moore (BM)

The Boyer-Moore (BM) algorithm is used by the Snort intrusion detection system and is
favored by many in the computer science for both its efficiency and relative simplicity. While in
theory BM may have to process the same input bytes many times, a process known as
backtracking, in practice it rarely does. BM can only represent simple strings such as “hello”. If
the pattern to be searched for is in the data stream, the entire portion of the data stream containing
the pattern must be in memory at the same time. In practice, from a network monitoring
perspective, BM cannot match a pattern than spans more than one packet. For most attacks this
isn’t a problem, but in the early days of ASIM, matching patterns in keystrokes was very
important, so BM would not work. Also, if an attacker wanted to, they could easily divide their
attack across many packets potentially rendering the current Snort useless.

3.4.2 Knuth-Morris-Pratt (KMP)

The Knuth-Morris-Pratt (KMP) algorithm was used in the UC Davis Network Security
Monitor (NSM) and its descendents, including the Air Force’s ASIM sensor, Lawrence
Livermore National Laboratory’s NIDS, and the Defense Information Systems Agency’s JIDS.
KMP is guaranteed to process each byte in the data stream only once, and is therefore always
faster than the naive string matching algorithms. KMP also has a very efficient footprint for the
memory required for each pattern. Like BM, KMP can only match simple strings such as “hello”.
Perhaps the most important feature of KMP is that it can trivially match patterns that cross packet
boundaries. This allows it to capture keystroke patterns in services such as telnet and rlogin, and
KMP cannot be as easily fooled by attackers as BM can be if an attacker divides his attack across
many packets..

Network Radar supports a KMP matching engine via the KmpStream object class.
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3.4.3 Regular Expression (RX)

Regular Expression (RE) matchers were initially used by the WheelGroup’s NetRanger
sensor. The critical factor in an RE matcher is that it can search for much richer patterns than
either BM or KMP. For example, it can match “GET.*cgi-bin.*etc/passwd”, a single pattern that
can capture a large number web attacks against CGI scripts. Regular expression pattern matcher
can be implemented as non-deterministic finite state machines (NFSM) or deterministic finite
state machines (DFSM). An NFSM implementation (e.g., used by WheelGroup’s NetRanger via
the regex series of UNIX library calls) has an efficient footprint in memory but can require many
passes across each byte of input as it perform backtracking. An NFSM implementation also
requires that the entire pattern in the data stream be in memory at the same time. In other words,
it cannot detect patterns that cross packet boundaries. A DFSM implementation, on the other
hand, may require a large memory footprint for each pattern, but it only processes each byte once
(so it is efficient), and it can detect patterns that cross packet boundaries.

Network Radar supports two regular expression pattern matchers: one with an NFSM
implementation and one with a DFSM implementation (discussed in the next section). The
RxStream object class is a non-deterministic finite state machine implementation of a regular
expression pattern matcher. It uses GNU’s librx library which must be installed on the system
(see Section 5.1.2).

3.4.4 Finite State Machine (FSM)

Network Radar also supports a deterministic finite state machine regular expression
pattern matcher via the FsmStream object class. As mentioned in the previous section, this
implementation often requires larger amounts of memory than the BM, FSM, or even the non-
deterministic RE matchers, but it only processes each input byte once (so it can be much more
efficient than a NFSM implementation) and it can match patterns that span multiple packets.
However, the biggest advantage of our FsmStream matcher comes from something we call
signature compression. This is covered in the next section.

3.4.5 Signature Compression

Besides Network Radar’s FsmStream advantages in efficiency (no backtracking),
detecting patterns that cross packet boundaries, and expressiveness (matching regular expressing
instead of just simple strings), the FsmStream can match multiple patterns simultaneously. In
other signature-based systems the first signature is checked against the data in a packet, then the
next signature is checked against the same packet data, and so on until all relevant signatures are
checked against the data. Checking for 30 signatures takes 30 times longer than checking for just
one signature.

The FsmStream class uses an approach we call signature compression that merges two or
more signatures into a single super signature (sometimes called a “meta signature”). The
FsmStream class can process this super signature is the same amount of time it takes to check a
simple signature. In other words, checking for 30 signatures takes the same amount of time as
checking for just one signature!

As networks become more congested, or as network speeds increase, network-based
sensors are prone to drop packets and therefore miss potential attacks. As a sensor spends more
time analyzing a single packet (e.g., to look for many signatures in the packet’s data), it increases
the chances that packets and attacks will be missed. Signature compression reduces the analysis
time required for each packet, thus reducing the chance of missing an attack.
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Figure 5 through Figure 8 illustrate the process of merging two signatures into a single
signature. Figure 5 shows a state machine diagram and table for two patterns: “aa” and ‘bb”. We
are using trivial signatures here because the steps can be very difficult to follow with anything
more complex. The state machine at the top of the left column matches “aa”. We begin in state
0. If we get an input of ‘a’ we move to state 1, but if we get an input of ‘b’ we remain in state 0.
If we are in state 1 and get an input of ‘a’, we return to state O and report the match m1 (“m1” will
stand for matching the pattern “aa”). On the other hand, if we are in state 1 and get an input of
‘b’, we silently move back to state 0. The table below the state machine shows the same
information in tabular form, and the state machine and table in the right column show the
matching information for the signature “bb”.

a b
b a
b <— a <—
a/ml b/m2
input input
a b a b
a 0 1 20| O 1
= =
o O/ml| O ® 1|1 0 [0/m2
Pattern: aa Pattern: bb

Figure 5: Two Simple Patterns

The first step in compressing two signatures is to take the cross product of the two
signatures. Figure 6 illustrates the process. Whereas the tables for patterns “aa” and “bb” each
had two states (0 and 1), the new table has four “meta states”: (0,0), (0,1), (1,0), and (1,1). In
general, when merging a signature that has »n states with a signature that has m states, the resulting
compressed signature will initially have nxm states.

In the “meta states”, the first number represents a state from the first signature, and the
second number represents the state from the second signature. For example, the “meta state”
(0,1) is associates with the first signature’s state O and the second signature’s state 1. If we look
at the table for the first signature (“aa”), when we are in state O and get an input of ‘a’ we move to
state 1. Likewise, if we look at the table for the second signature (“bb”’), when we are in state 1
and get an input of ‘a’ we move to state 0. Thus, in the new table, if we are in state (0,1) and get
an input of ‘a’ we move to state (1,0).
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Figure 6: Signature Cross Product

Figure 7 shows the table and state machine representation of our new signature. It detects
the patterns “aa” and “bb” simultaneously. If we look closely at the state machine representation
on the right, we notice that there are no inputs to the “meta state” (1,1). Since we always start in
state (0,0), there is no possible input stream that can lead us to state (1,1). We can also see this in
the table; although, it is not as obvious to see. Inside the table there are no “next state” values of
(1,1). We can therefore eliminate “meta state” (1,1) in a process called pruning.

We prune the graph by starting at state (0,0) and performing a breadth first search though

the state machine graph. At the end of the search, any state not reached by the search can be
eliminated.

b/m2

input

a b

00| 1,0 0,1)
©,1) | (1,00 |(0,0/m2
(1,0) |(0,0)/m1 | (0,1)
(1,1) 1(0,0)/m1 | (0,0)/m2

Jje)s

Pattern: aa | bb

a/ml

Figure 7: Table and Diagram for "aa | bb"

Figure 8 shows the results of the pruned signature. We have also renamed “meta states”
(0,0), (0,1), and (1,0) to states O, 1, and 2. The resulting graph efficiently searches for patterns
“aa” and “bb” simultaneously. For example, if the input stream is “bb”, we begin at state 0, move
to state 1, and then move back to state 0 while reporting match m2. If the input stream is “baa”,

we begin at state 0, move to state 1, move to state 2, and them move to state O while reporting
match m1.
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Figure 8: Eliminate Unreachable States

Network Radar includes a program called merge_fsm that takes two FsmStream signature
representations and merges them into a single super signature. The resulting super signature can
be merged with other FsmStream signatures or super signatures. As more and more complex
super signatures are merged, however, the time to compute the next super signature grows
considerable. While theoretically there is no limit to the number of signatures that can be merged
into a single super signature, in practice we have found that the time required to merge more than
30 signatures into a single super signature can test one’s patients.

3.5 Signatures

Finally, we have reached the last component in our Signature Pyramid introduced in
Section 3.2, the actual signatures used to detect a particular activity on the network. More often
than not, when a signature-based system generates a large number of false positives, the problem
is not the signature system (e.g., the data stream and the signature engine) but rather the
signatures themselves. The signatures simply are not refined enough to properly detect the
activity of interest and skip the unrelated activity. Fortunately, because neither the data stream
nor the signature engine needs to be modified, this problem is usually the easiest to resolve.
Below is a brief historical example to illustrate the issue.

The second network-based signature ever created, the string “daemon”, was added to the
Network Security Monitor (NSM) around 1990. The purpose of the string was to detect someone
opening, copying, transferring, or otherwise manipulating a password file, because at that time
weak passwords were the primary method for penetrating systems and usually the first target of
an attacker. The string “daemon” was in every UNIX-based password file. The pattern was not
designed to detect a specific attack but to detect an indicator of possible misuse (accessing a
password file). The first day the string was used we detected an attack using the signature.

Unfortunately, the string “daemon” occurs in many sources not tied to the password file.
For example, when a mail message bounces, the error message accompanying the bounced
message would day it came from the mail “daemon”. The result is that the string generated
many false positives.

Fortunately being both the operator of the sensor and the creator of the signatures, I was
able to easily compare three pieces of information: (1) the signature pattern, (2) the activity I was
trying to detect (the content of a password file), and (3) samples of data that were creating false
positives. From this I made a simple extension to the pattern by appending a colon, ‘:’ to the end
of the signature. “daemon:” had a much lower false positive reporting level than “daemon,” but it
still easily detected someone opening or transferring a password file.

The lesson is that signature systems deployed with stringent quality assurance testing of
the signatures can still be very valuable. Combine this with other advances made in Network
Radar such as regular expression pattern matching across packets, signature compression, and
protocol parsing to add context, and signatures can be a very powerful detection force.
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3.6 Pattern Matching Summary

To summarize, while quality assurance of the signatures used inside a signature-based
system is outside the scope of the Network Radar work, it is important to understand this is an
important issue when analyzing the efficacy of a signature-based system. Too often we have
heard “Signature systems produce too many false positives. We need a new technology.” When
facing a problem in a signature-based system, the first things to examine are the signatures
themselves.

However, once the quality of a signature has reached its limit, you may then want to look
at the other components of the Signature Pyramid. Does the signature engine need to be more
powerful? For example, moving from a simple string based system such as the early version of
ASIM and today’s Snort to a regular expression based system such as Network Radar (as
implemented by the Network Monitoring Framework’s RxStream and FsmStream classes). Or
does the data stream need to be processed differently? A parser required to provide context to a
pattern matcher might help. For example, Network Radar provides a simple http parser to
analyze only the URL component in an http request. Or perhaps the data stream needs to be
modified to achieve the correct results. For example, Network Monitoring Framework’s
TelnetStream class removes telnet negotiation protocol from the data stream so proper string
matching can be done in telnet connections.

The issue of how well a signature-based intrusion detection system works is complex.
Network Radar tackles several of these issues through novel NmfStream subclass objects.

4 Research Example: Cluster-based Detection

4.1 Introduction

Thumbprints were first proposed in 1992 in a paper titled “Internetwork Security
Monitor: An Intrusion-Detection System for Large-Scale Networks™. The primary purpose for
thumbprints as proposed in that original paper as well as a follow up paper describing an initial
prototype® was to track users hopping across the network via interactive login services such as
telnet and rlogin. Because of trust relationships between hosts (.rhosts and hosts.equiv), default
passwords, weak passwords, and shared passwords across multiple systems, attackers could
penetrate deeply into the Internet with these interactive login services.

Unfortunately, by the late 1990s when we started deploying a thumbprint-based sensor
(Network Radar) in an operational environment, most sites which were concerned with security
had largely disabled the use of the interactive plaintext telnet and rlogin services. When
interactive login was necessary, these sites used the Secure Shell protocol, SSH. Because our
thumbprint approach analyzed the content of the interactive login sessions (e.g., keystrokes and
the data displayed on the user’s screen), and because SSH encrypts this content, thumbprint
analysis was no longer as effective as it would have been in the early 1990s.

In 1999 and 2000 we investigated other uses of thumbprints, and we applied thumbprints
to entire network sessions to look for the same content crossing multiple network connections.

> L.T. Heberlein, B. Mukherjee, K.N. Levitt., “Internetwork Security Monitor: An Intrusion-
Detection System for Large-Scale Networks,” Proc. 15" National Computer Security Conference,
pp. 262-271, Oct. 1992.

¢ S. Staniford-Chen, and L.T. Heberlein, “Holding Intruders Accountable on the Internet”.
Proceedings of the 1995 IEEE Symposium on Security and Privacy, Oakland, CA, 8-10 May
1995, pp. 39-49.
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The purpose of this approach is to detect new attacks launched against multiple servers or worms
spreading across a network. The thumbprint can even be used as a signature, and when deployed
in interdiction devices (e.g., firewalls) thumbprints could potentially be used to stop a newly
detected attack.

In section 4.2 we present what a thumbprint is. In section 4.3 we compare thumbprints
with the more traditional signature-based approaches. We also discuss what thumbprints can do
that classical signatures cannot: detect new attacks by looking at repeated activity. In section 4.4
we present a simple operational model using these concepts to stop a fast moving worm. Finally,
in section 4.5 we wrap-up our tour of thumbprints with an actual example of using this approach
to track the Love Bug worm sweeping through the Air Force’s Rome Labs.

4.2 Thumbprint Concept

A thumbprint is simply a small numerical representation of some content. It is related to
the more familiar hash functions and checksums. Figure 9 shows the basic approach. The
original content, “The quick brown fox jumped over the lazy dog.” is sent through a hash function
that generates a number. The original content consisted of 360 bits (8 bits per character times 45
characters) and the result in a single 32-bit number (a typical unsigned integer on most
computers).

The quick brown fox jumped over the lazy dog. 360 bits
— _/

~

Hash

'

189,283 32 bits

Figure 9: Numerical Representation

This number can serve as type of compact representation of the original content. For
example, suppose a document in processed by this technique. A hash number is computed for
each sentence in the document, and then we store all the numbers representing all the sentences in
a hash table. Later, if a user provides us with a sample sentence and asks us if it is in the
document, we can use the following algorithm to very quickly determine the answer. First,
compute the hash value of the sample sentence. Second, look in the hash table to see if that
number exists in the table. If it is not in the table, then the sample sentence is not in the document
and we are done. Third, if we do find a matching hash value in the table, then we examine the
sentence (or sentences) in the original document that created the hash value and determine if it
matches our sample sentence.

This is roughly the way we use thumbprints to identify duplicate content crossing the
network. We compute a thumbprint of each network connection observed (essentially the sample
sentence provided by the user in the above example), and then we look in our hash table to
determine if we have potentially seen the same content in another connection.

Unfortunately, traditional hash functions do not work well for our problem area. Most
hash functions are designed to produce a completely different hash number even if the content
only varies by a single byte. For example, in Figure 10 we modified the original sentence by
making the word “dog” plural, “dogs.” This single change produces a completely different hash
number. In fact, in traditional hashing functions, looking at just the resulting numbers would not
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indicate that sentences A and B were very similar, and sentence C was completely different than
both of these.

The quick brown fox The quick brown fox Hello World.
jumped over the lazy dog. jumped over the lazy dogs.
- T O T / I J
Hash Hash Hash
189,283 38 2,000,952
A B C

Figure 10: Traditional Checksums

The reason that this traditional approach does not work for us is that the same attack, as
observed from our network sensor, might appear slightly differently from one instance to another.
For example, in the case of email worms, the content of the email connection would include the
sender and recipient’s email addresses, and these would vary each time the worm attempts to
infect a new machine. Therefore, we need a hashing function that preserves the similarity. Our
hash numbers for similar content should be similar. Blain Burnham described this approach as a
“robust checksum.”

Figure 11 demonstrates how our thumbprint hashing function might treat the three sample
sentences from the earlier example. Now the second sentence, which varies from the original
sentence by the addition of the single letter ‘s’, has a hash value that is only slightly different
from that of the original sentence. Now when the user presents a sample sentence to our
hypothetical document analysis system, we can quickly determine whether the exact sentence, or
one very close to the sample sentence, exists in the original document.

The quick brown fox The quick brown fox Hello World.
jumped over the lazy dog. jumped over the lazy dogs.
- T O T / I J
Hash Hash Hash
189,283 189,280 2,000,952
A B C

Figure 11: Thumbprint Checksums

These are the basic concepts of a thumbprint: condense a potentially large amount of
content to a single number, and similar content should generate similar numbers. There can also
be variations. For example, we might condense the content to two numbers instead of one (think
of a two dimensional vector). Once again, for similar content, each pair of numbers should be
similar. By using two numbers, however, we reduce the probability of a false positive, where two
dissimilar content samples would have both pairs of numbers similar. One approach that satisfies
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all of these needs, and the one we use to in our implementation, is a popular technique in
multivariate statistical analysis called principal component analysis (PCA). Other algorithms
could potentially be used.

4.3 Comparisons to Traditional Detection Techniques

The thumbprint approach just described is simply a mechanism that can be used for
quickly comparing content. If an exact match is needed, a traditional checksum can be used. If a
more robust match is required, our PCA approach can be used. In this section we compare this
approach with traditional content-based detection approaches used in intrusion detection systems.
We also discuss how this approach can be used in way that traditional signature-based detection
cannot be: looking for original attacks on the network.

Most traditional network-based intrusion detection systems use some type of key-word
detection algorithm. The early UC Davis Network Security Monitor (NSM), Air Force’s ASIM
monitor, LLNL’s NID, and DISA’s JIDS intrusion detection systems all used the Knuth-Morris-
Pratt pattern matcher. Snort uses a Boyer-Moore pattern matcher. Early versions of
WheelGroup’s NetRanger used the default UNIX regular expression matcher, which in turn used
a basic non-deterministic, backtracking state machine.

All these approaches essentially do the same thing: they all look for strings in a network
data stream. The strings are hand-generated by analysts. And the systems look for each string
one at a time. If you double the number of strings you are searching for, you double the analysis
time that must be spent on each packet. (The one exception to this is Network Radar’s
FsmStream pattern matcher described in Section 3.4.5.)

Our thumbprint-based approach, on the other hand, calculates a vector (perhaps just a
single number (e.g., a single hash value) representing a one-dimensional vector or maybe several
numbers for a multi-dimensional vector). To compare a vector of a new connection against
known attacks, we simply compute the distance between our new vector and vectors of known
attacks. However, because the vectors are numerical in nature, we can hash the vectors into
buckets, so the new vector can be compared against all known attack vectors (perhaps thousands)
simultaneously by simply looking into the appropriate hash bucket. Thus, when trying to solve
the traditional problem of looking for known patterns, this approach scales to larger signature sets
much better than the traditional signature algorithms.

The thumbprint approach can also do something traditional signature-based systems
cannot: detect new attacks automatically.

In a traditional operational setting, somehow a new attack is detected. Since most
signature-based systems primarily detect what they already know about, new attacks are often
“detected” through some other mechanism than the intrusion detection system. Perhaps an attack
tool is posted to BugTraq. Perhaps a site captures the new attack with a honey pot. However the
new attack is detected, the appropriate evidence is shipped to the analysts (e.g., AFIWC). An
analyst carefully examines the attack and then hand-generates a string or pattern that will detect
the new attack.

Our approach, on the other hand, can detect the new attack if it is repeated several times,
such as when an attack is part of a worm or used against multiple servers (e.g., the attack is
sweeping a site). Thus the new attack can be detected in theory on just the second time it passes
our sensor. Furthermore, since the vector is the signature, the signature is automatically created.

In the traditional operational setting, because the attack must be detected “by other
means”, and the signature must be generated by hand by a human analyst, a good turn around
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time from first attack to a signature ready for deployment is a day; at best a several hour turn
around time can be expected. This is far too slow to affect a fast spreading worm.

Our approach, on the other hand, may have a signature ready to go within a second of the
first observed attack. Thus our approach can be used to interdict fast moving attacks.

4.4 Example Operational Model

Figure 12 shows an example scenario of how this thumbprint-based approach, combined
with cluster detection just described, can be used to quickly stop a new worm from spreading.
The Air Force network in the upper left corner is attacked multiple times, perhaps by an email
worm. Our sensor detects the attack by identifying the cluster of content vectors (1). The vector
is the signature, and it is reported to a central distribution center (2). The distribution center
pushes the signature to interdiction devices such as email gateways and firewalls (3). An email
gateway at a university detects the email worm, and places the offending email into a queue to be
processed or deleted by a system administrator at a later time (4). Because the detection is
automatic, the signature generation is automatic, and the distribution the signature is automatic,
the interdiction devices around the globe can interrupt the spread of the worm in minutes from the
attack’s initial detection at an Air Force network.

Generate and report signature

Air Force
Network

Cluster
Detected

\
attacks . .
*~" University

Interdie
Attacks

Network

Figure 12: Operational Model
4.5 Example of Detection in Action

Figure 12 shows a hypothetical scenario. However, Network Radar does thumbprint
network sessions (as well as interactive logins), and we have operational experience
demonstrating that the approach can work. Network Radar was running at the Air Force’s Rome
Labs on May 4", 2000 when the ILOVEYOU virus (a.k.a., the Love Bug worm) hit the Internet.
We harvested the data collected by the monitor and generated an animated movie that shows the
cluster spikes as the worm moved through Rome Labs. Figure 13 shows several selected frames
from the movie.

Since ILOVEYOU was an email-based worm, for several reasons the best place to apply
our vector-based cluster detection technology is in an email gateway (as opposed to a network
sensor). First, a single sendmail connection can and often does transmit multiple email messages
over the same connection. However, from our network perspective we treat the entire connection
as a single transaction. Second, as email worms travel from user to user, header information is
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constantly changing, so from a network perspective that cannot distinguish header, body, and
attachments in an email message, the representative vector will vary slightly as the headers vary.
We could potentially address this with Network Radar since it can easily build a sendmail parser,
but we are unlikely to get firewall vendors that will need to interdict the attack later to do the
same thing. Third, email systems encode attachments using several different algorithms, so from
the network perspective the same worm will look different depending on the encoding scheme
used by the email client. An email gateway can decode the attachment and calculate the vector
on the original data.

For all these reasons, email-based worms should be detected (and interdicted) via email
gateways as opposed to a network monitor that we used. However, despite this, our network
monitor version, a first generation prototype at that, was clearly able to identify the spike from the
attack.

In each graph in Figure 13, the horizontal axis shows the value a network connection was
mapped to (i.e., the hash number described earlier); that is, we were only using a one-dimensional
vector to represent each connection. A small circle is placed on this axis to indicate the score our
system assigned to a copy of the worm that was sent to us (via our DARPA security mailing list,
no less). The vertical axis represents the rates at which connections were observed matching a
given vector score. The maximum value on our graph is 500 connections per hour for a given
vector value.

Figure 13’s panel A shows the initial indications of the virus. We see a small cluster, or
spike, at the circle matching the score we received, and we also see a second cluster towards the
left. Because the two clusters tracked each other so closely, we believe the second cluster was the
same worm where the email attachment was encoded with a different algorithm. Unfortunately
(or fortunately depending on your perspective) we only received a single copy of the worm, so we
could not verify the second encoding hypothesis. The spread of the worm continues to grow
through panels B, C, and D, until it reaches it maximum peak in panel E at 8:38am. Following
the peak the virus rate declines in F and reaches almost the level of background noise in panel G
at 10:45am. Finally the virus shows another increase beginning around 11:00am and a second
smaller peak in panel H at 11:24am. This second period of growth corresponds to the eight
o’clock hour on the west coast — just when people are showing up to work and opening their
email there.

This real-world example demonstrates two important points. First the worm spread very
quickly, reaching a peak about 35 minutes after initial penetration and almost burning itself out in
less than three hours. The classic intrusion detection and interdiction systems cannot compete
with this time scale. Second, the basic approach of vector-based cluster detection does work,
even in this less than optimal situation.
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Figure 13: ILOVEYOU Worm Strikes Rome Labs
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5 Installing Network Radar

In this section we describe how to install the Network Radar package. The installation
includes the Network Radar application suite as well as the Network Monitoring Framework
(NMF). NMF allows a developer to build their own custom applications using the C++ header
files and library. As a demonstration of this, we developed an additional set of libraries and
applications for Rome Labs to allow their developers to tap into the Network Radar Audit Trail
(NRAT) reports from C programs instead of using C++ programs. Finally, before any of these
packages can be installed, two external libraries must be installed on the system. These are
libpcap, the packet capture library originally from Lawrence Berkeley Laboratory, and librx,
GNU’s regular expression library.

All of these packages have been provided to Rome Labs and the Defense Advanced
Research Agency (DARPA) Technology Integration Center (TIC) on CDs. For ease of
installation, they should all be placed in the same directory. The packages are as follows:

PACKAGE Description

libpcap.tar.Z The packet capture library used by most network
monitoring applications.

rx-1_5.tar.gz GNU’s regular expression library.

NMEF.11Nov00.tar.gz The Network Monitoring Framework (NMF) and
Network Radar application suite.

C_NR_BRIDGE.tar.gz C-based Network Radar bridge libraries. This is a
set of libraries to provide a C-based interface (as
opposed to C++ interface) to access reports from
Network Radar’s nrat sensor. All reports will be
fully parsed and returned to the calling function as
a C data structure.

NR_BRIDGE_APPS.tar.gz | C-based Network Radar bridge applications. These
sample applications can be used as is or modified
to meet Rome Labs’s needs.

The installation below uses the command line and assumes that the user has installed all
tar packages in the same directory. The installation also assumes the user is already in that same
directory. The installation also assumes that the user carries out the steps from Section 5.1
through Section 5.4 exactly as shown. The Network Radar suite will be installed in the user’s
home directory under the name NetRadar.

5.1 Installing Third-Party Libraries

Sections 5.1.1 and 5.1.2 show how to build the two third-party library packages used by
the Network Monitoring Framework and Network Radar application suite. These must be
installed before installing Network Radar.
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5.1.1 Building Packet Capture Library

zcat libpcap.tar.Z | tar xf -
cd libpcap-0.4

./configure

make

o0 00 o oe

5.1.2 Building Regular Expression Library
cd ..

gzip -cd rx-1 5.tar.gz | tar xf -
cd rx-1.5

./configure

make

5.2 Installing NMF and Network Radar

This section shows how to build and install the Network Monitoring Framework (NMF)
and the Network Radar application suite. By default, Network Radar will be installed in the
user’s home directory under the name NetRadar. To override this location, the user can provide
the additional command-line option “~-prefix=dir” to the configure script below. The value
of dir is the location where the user wants the package to be installed (e.g., - -
prefix=/usr/local/NetRadar).

o° 00 o° o° o°

g cd ..

% gzip -cd NMF.11Nov00.tar.gz | tar xf -

% cd NMF

% ./configure --with-cxx=g++ --with-pcap=../libpcap-0.4 \

—-with-rx=../rx-1.5
% make
% make install

5.3 Building C-based Libraries and Applications

The previous steps installed Network Radar; however, some users wanted more specific
examples of how their C-based applications can tap into the information from the Network Radar
nrat sensor. The following sections show how to build a C-based library and two C applications
(nr_client and aide_test). The two applications were developed specifically for users and
developers and Rome Labs, but they are general purpose enough that others may find them useful
too.

5.3.1 Building Network Radar Bridge Libraries

cd ..

gzip -cd C_NR BRIDGE.tar.gz | tar xf -
cd C_NR_BRIDGE

./configure

make

make install

o 00 o° 0P o oP

5.3.2 Building Sample C Applications to Connect to Nrat Sensor

% cd ..

% gzip -cd NR_BRIDGE APPS.tar.gz | tar xf -
% cd NR_BRIDGE_APPS

% ./configure

% make
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5.4 Copy Read-only Template Files

Finally, several Network Radar template files need to be copied from their read-only
directories into the Network Radar Support directory. Because these files are typically modified
by users in order to meet their local needs, we wanted to make sure there were always a copies of
the original files around (in case they messed up a file and needed to start from scratch again).
The following command assumes that Network Radar was installed in a directory called
NetRadar in the user’s home directory (the default behavior). If the user changes the installation
location (see Section 5.2), the user needs to use that directory location instead.

% cd ~/NetRadar/Support/Templates
$cp * ../.

6 Running NRAT

The Network Radar Audit Trail (nrat) application is the primary Network Radar sensor
and usually the only application most users run. Nrat began life as a simple application to
generate an audit trail of network activity, but eventually it grew into a highly configurable multi-
purpose sensor that most people used as an intrusion detection sensor. In fact, there are over 70
configuration switches a user can set.

Before a user runs nrat, he must set the environment variable RADAR_DIST to point to
the Network Radar installation and he must add Network Radar’s binary directory to his path.
The user can set these values through his appropriate shell configuration files (e.g., .cshrc) so it is
performed automatically, or the user can set it from the shell prompt at any time. To set these
variables for the C shell, the user can use the following commands:

% setenv RADAR DIST $HOME/NetRadar
% set path=($RADAR DIST/bin $path)

Once these variables are set, the user can start the nrat sensor simply by typing the
command “nrat”. However, because nrat opens a network tap in promiscuous mode, most
operating systems require that the application run with root privileges. This can be done in one of
three ways. First, the user can set the nrat application to be an SUID root application. Second,
the user can simply su to root and run the application. This may require the user to reset the
RADAR_DIST and path variables to pick up the Network Radar information. Third, the user can
use the sudo command to temporarily run the application as root. This last approach is probably
the best one, but it may require support from the system administrator to properly install and
configure sudo. Thus, to run nrat, use the following command:

% sudo nrat

Nrat will begin generating audit records in the current working directory. To place the
audit trails in another directory, make sure you change the current working directory to the
desired location before running the program. By default, new audit files will be created every
hour on the hour.

As mentioned, nrat supports many options. These are listed in Section 6.1. Each option
has a default value, but you can changes the default value by adding a line in the nrat6.defaults
file that can be found in the Network Radar Support directory. The value of a variable is changed
by adding a line to nrat6.defaults with the variable name, followed by white space, followed by
the value for the variable. Several variables have already been set in the nrat6.defaults file to
meet with Rome Labs need.

The nrat6.defaults file was designed to make semi-permanent changes to the way nrat is
run. That is, you use nrat6.defaults to set nrat6 to behave as you usually want it to run. If,
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however, you want to make a change to nrat’s behavior for just one run of the application, you
can also use a command-line option. The command-line option will override all other settings.
All command line options consist of a flag representing a variable, followed by a space, followed
by the value for the variable.

For example, nrat includes the monitor name in each report that it sends over the
network. This allows a central security management station to know which sensor sent each
report. However, if you want to only test a change to some component in the system, you can set
the monitor to some temporary name (e.g., “test_run”), and then you can later remove these
records from your security management station’s long-term database by simply looking for
records from “test_run”. To change the monitor name sent with each report, use the following
command:

% sudo nrat -mn test_run

All configurations switches that can be changed are described in the next section.
6.1 NRAT Configurations

This section describes the switches that can be configured by the user. All of these
variables have a default value. This default value can be overridden on a semi-permanent basis
by adding the variable name and value to a line in the file nrat6.defaults file found in the Network
Radar Support directory. Several changes have been added to this file already to suite Rome
Labs’ needs. Furthermore, a value can be set at run time through a command-line option that will
only affect the current run of the application. The command line option consists of a flag
followed by a value (see example in previous section). All the information described below can
also be found online in the file nrat6.definitions, also in the Network Radar Support directory.

For each variable that can be changed, the following information is provided.

* Variable. This is the name of the variable. If you are going to change the default value
by adding a line in nrat6.defaults, this is the name you use to identify the variable.

* Values. This is the set of values that you can set the variable to. Sometimes this might
be a simple “yes” or “no” value, sometimes it may be a list of specific names, and
sometimes it may be a range of numbers.

* Default Value. This is the default value for the variable. This value can be overridden
by adding the appropriate line to the file nrat6.defaults. Both the default value and the
value in the nrat6.defaults value can be overridden by using a command-line option.
Note: the nrat6.defaults file has already overridden several variables.

* Command Line. This is the flag used at run-time to override the default value or the
value in the nrat6.defaults file. Each flag must be followed by a value. See the previous
section for an example.

* Description. This is a brief description of the variable’s purpose.

Variable: | UseFileTime

Values: | yes, no

Default Value: | yes

Command Line | -uft
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Description: | UseFileTime directs the monitor to base its starting time on the first
packet it can read. This works for both packets from a file and from a live
network tap. However, if you are reading from a live network tap (1) the
very first packet observed will not be processed (it is only used for settin
the time), and if you have a *very* quiet network, the program may block
until it observes the first packet. Neither of these problems occur when
the packet source is a file.
If you set UseFileTime to "no", then the current operating system time is
used. When looking for sweeps or multiple hops across a network, this
can cause problems when the packets comes from a data file.
Variable: | MonitorName
Values: | string
Default Value: | none, name retrieved from file MonitorName
Command Line | -mn
Description: | MonitorName replaces the use of the file
$RADAR_DIST/Support/MonitorName. Every attack or detail event
includes the name of the monitor which generated it. The default value is
NR (for Network Radar). If you run multiple monitors feeding into a
central database or network management station, it is probably a good
idea to give each monitor a unique name.
Variable: | TapType
Values: | FileTap TcpdumpTap PcapTap DIpiTap SnoopTap
Default Value: | PcapTap
Command Line: | -tap
Description: | TapType defines the type of tap used by the monitor. Each tap is designed
to read packets from a specific data source. All taps may not be supported
on all platforms. Once started, the monitor cannot switch tap types or data
sources.
Variable: | TapIlnput
Values: | string, depends on the TapType
Default Value: | depends on the TapType
Command Line: | -i
Description: | TapInput defines a particular packet source (e.g., a network interface or a
data file) from which a Tap will read packets. Once started, the monitor
cannot switch data sources.
Variable: | StopTapOnFail
Values: | yes|no
Default Value: | yes
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Command Line: | -stof
Description: | StopTapOnFail directs the monitor to exit when it fails to read a packet.
This is typically used when reading from a data file.
Variable: | InstallEpicDetails
Values: | yes|no
Default Value: | no
Command Line: | -ied
Description: | InstallEpicDetails specifies whether the monitor should set up the classic
EPIC detail report server.
Shutting down a server terminates all existing connections to it.
Variable: | EpicDetailsPort
Values: | number 1-65535
Default Value: | 1234
Command Line: | -edp
Description: | EpicDetailsPort specifies the port at which the EPIC Detail server will be
installed.
Variable: | EpicDetailsNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -edn
Description: | EpicDetailsNetwork specifies the Network interface at which the EPIC
Detail server will be installed.
Variable: | InstallBinaryDetails
Values: | yes|no
Default Value: | no
Command Line: | -ibd
Description: | InstallBinaryDetails specifies whether the monitor should set up the classic
binary detail report server.
Shutting down a server terminates all existing connections to it.
Variable: | BinaryDetailsPort
Values: | number 1-65535
Default Value: | 21234
Command Line: | -bdp
Description: | BinaryDetailsPort specifies the port at which the binary detail server will

be installed.
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Variable: | BinaryDetailsNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -bdd
Description: | BinaryDetailsNetwork specifies the network interface at which the binary
detail server will be installed.
Variable: | InstallEpicAttacks
Values: | yes|no
Default Value: | no
Command Line: | -iea
Description: | InstallEpicAttacks specifies whether the monitor should set up the classic
EPIC attack report server.
Shutting down a server terminates all existing connections to it.
Variable: | EpicAttackPort
Values: | number, 1-65535
Default Value: | 2345
Command Line: | -eap
Description: | EpicDetailsPort specifies the port at which the EPIC attack server will be
installed.
Variable: | EpicAttackNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -ean
Description: | EpicAttackNetwork specifies the network interface at which the EPIC
attack server will be installed.
Variable: | InstallBinaryAttacks
Values: | yes|no
Default Value: | no
Command Line: | -iba
Description: | InstallBinaryAttacks specifies whether the monitor should set up the
classic binary attack report server.
Variable: | BinaryAttackPort
Values: | number, 1-65535
Default Value: | 22345
Command Line: | -bap
Description: | BinaryDetailsPort specifies the port at which the binary attack server will
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| be installed.

Variable: | BinaryAttackNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -ban
Description: | BinaryAttackNetwork specifies the network interface at which the binary
attack server will be installed.
Variable: | InstallEpicZones
Values: | yes|no
Default Value: | no
Command Line: | -iez
Description: | InstallEpicZones specifies whether the monitor should set up the classic
EPIC zone change report server.
Variable: | EpicZonePort
Values: | number, 1-65535
Default Value: | 2346
Command Line: | -ezp
Description: | InstallEpicZones specifies the port at which the EPIC zone change server
will be installed.
Variable: | EpicZoneNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -ezn
Description: | EpicZoneNetwork specifies the network interface at which the EPIC zone
server will be installed.
Variable: | InstallEpicUsage
Values: | yes|no
Default Value: | no
Command Line: | -ieu
Description: | InstallEpicUsage specifies whether the monitor should set up the classic
EPIC object usage server. This server reports the number of dynamic
objects (e.g., TCP Streams) in allocated, in use, and the total number
requested.
Variable: | EpicUsagePort
Values: | number, 1-65535
Default Value: | 3456
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Command Line: | -eup
Description: | EpicUsagePort specifies the port at which the EPIC object usage server
will be installed.
Variable: | EpicUsageNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -eun
Description: | EpicUsageNetwork specifies the network interface at which the EPIC
usage server will be installed.
Variable: | InstallEpicStrings
Values: | yes|no
Default Value: | no
Command Line: | -eas
Description: | InstallEpicStrings specifies whether the monitor should set up the classic
EPIC pattern match report server.
Variable: | EpicStringsPort
Values: | number, 1-65535
Default Value: | 7890
Command Line: | -esp
Description: | EpicStringsPort specifies the port where the EPIC pattern match report
server will be installed.
Variable: | EpicStringsNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -esn
Description: | EpicStringsNetwork specifies the network interface at which the EPIC
strings server will be installed.
Variable: | InstallDistributedObjects
Values: | yes|no
Default Value: | no
Command Line: | -ido
Description: | InstallDistributedObjects specifies whether the monitor should set up the

distributed object server. Currently this is primarily used to tap individual
network sessions.

Shutting down a server terminates all existing connections to it.
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Variable: | DistributedObjectsPort
Values: | number, 1-65535
Default Value: | 4567
Command Line: | -dop
Description: | DistributedObjectsPort specifies the port where the distributed object
server will be installed.
Variable: | DistributedObjectsNetwork
Values: | any | IP address
Default Value: | any
Command Line: | -don
Description: | DistributedObjectsNetwork specifies the Network interface at which the
distributed objects server will be installed.
Variable: | DoEthernetLayer
Values: | yes|no
Default Value: | yes
Command Line: | -del
Description: | DoEthernetLayer directs the monitor to process Ethernet packets.
Variable: | DolpLayer
Values: | yes|no
Default Value: | yes
Command Line: | -dil
Description: | DolpLayer directs the monitor to process IP packets. An appropriate link
layer must also be turned on. (Currently the only valid link layer is
EthernetLayer).
Variable: | DolpAttackProxy
Values: | yes|no
Default Value: | no
Command Line: | -diap
Description: | DolpAttackProxy directs the monitor to used the IpAttackProxy to identify
IP protocol layer attacks.
Variable: | DolpFilter
Values: | yes|no
Default Value: | no
Command Line: | -dif
Description: | DolpFilter directs the monitor to apply the filter at the IP layer. The

specific filter is specified by the variable IpFilterType.
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Variable: | IpFilterType
Values: | IpZoneFilter
Default Value: | IpZoneFilter
Command Line: | -ift
Description: | IpFilterType identifies the type of filter to apply to the IP layer. Currently,
only one type is supported, IpFilterType. It loads the filter configuration
identified in NratZoneFilter.conf.
Variable: | DolpReassembly
Values: | yes|no
Default Value: | no
Command Line: | -dir
Description: | DolpReassembly directs the monitor to reassemble fragmented IP packets.
This also detects a number of IP overlap attacks.
Variable: | DoTcpLayer
Values: | yes|no
Default Value: | yes
Command Line: | -dtl
Description: | DoTcpLayer directs the monitor to process TCP packets. The IP layer
must also be turned on.
Variable: | DoTcpSessions
Values: | yes|no
Default Value: | yes
Command Line: | -dts
Description: | DoTcpSessions directs the monitor to create TCP session objects to track
the behavior of individual TCP sessions.
Variable: | MaxTcpSessions
Values: | number
Default Value: | none
Command Line: | -mts
Description: | MaxTcpSessions directs the monitor to used the supplied number as the
maximum number of TCP sessions tracked. If the number is reached no
new sessions will be tracked until an existing session closes.
Variable: | DoTcpAttackProxy
Values: | yes|no
Default Value: | no
Command Line: | -dtap
Description: | DoTcpAttackProxy directs the monitor to used the TcpAttackProxy to

identify TCP protocol layer attacks.
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Variable: | ReportTcpSessionsToDetails
Values: | yes|no
Default Value: | yes
Command Line: | -rtd
Description: | ReportTcpSessionsToDetails directs the monitor to send all TCP sessions
(both requests and fully established connections) to the details server.
Variable: | DoTaggedTcpPorts
Values: | yes|no
Default Value: | no
Command Line: | -dttp
Description: | DoTaggedTcpPorts directs the monitor to report attempted access to
specific ports as an attack. For example, a connection attempt to port
31337 may be looking for BackOrifice. You can also use this feature to
establish honey pots or identify scans looking at only common server ports
that generally aren't accessed (e.g., chargen at port 19). The specified
ports are defined in the file TcpTaggedPorts.conf in Network Radar's
Support directory.
Variable: | ReportTcpAccessDenied
Values: | yes|no
Default Value: | no
Command Line: | -rtad
Description: | ReportTcpAccessDenied reports deined access to TCP (and eventually
UDP) ports. A denied TCP session is defined by the server returning a
RST when it receives a SYN request. A denied UDP session is defined by
the server returning an ICMP port unreachable message. This feature can
be useful for detecting a simple scans of a host (e.g., just a few ports, but
not enough to set off a sweep analysis). However, this can cause enormous
numbers of attack reports to be generated during a heavy network scan.
Variable: | DoUdpLayer
Values: | yes|no
Default Value: | yes
Command Line: | -dul
Description: | DoUdpLayer directs the monitor to process UDP packets. The IP layer
must also be turned on.
Variable: | DoUdpSessions
Values: | yes|no
Default Value: | yes
Command Line: | -dus
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Description: | DoUdpSessions directs the monitor to create UDP session objects to track
the behavior of individual UDP sessions.
Variable: | MaxUdpSessions
Values: | number
Default Value: | none
Command Line: | -mus
Description: | MaxUdpSessions directs the monitor to used the supplied number as the
maximum number of UDP sessions tracked. If the number is reached no
new sessions will be tracked until an existing session closes.
Variable: | DoUdpAttackProxy
Values: | yes|no
Default Value: | no
Command Line: | -duap
Description: | DoUdpAttackProxy directs the monitor to used the UdpAttackProxy to
identify UDP protocol layer attacks.
Variable: | ReportUdpSessionsToDetails
Values: | yes|no
Default Value: | yes
Command Line: | -rud
Description: | ReportUdpSessionsToDetails directs the monitor to send all UDP sessions
to the details server.
Variable: | DoTaggedUdpPorts
Values: | yes|no
Default Value: | no
Command Line: | -dtup
Description: | DoTaggedUdpPorts directs the monitor to report attempted access to
specific ports as an attack. For example, a connection attempt to port
31337 may be looking for BackOrifice. You can also use this feature to
establish honey pots or identify scans looking at only common server ports
that generally aren't accessed (e.g., chargen at port 19). The specified
ports are defined in the file UdpTaggedPorts.conf in Network Radar's
Support directory.
Variable: | DolcmpLayer
Values: | yes|no
Default Value: | yes
Command Line: | -dicmpl
Description: | DolcmpLayer directs the monitor to process ICMP packets. The IP layer

must also be turned on.
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Variable: | DoTraceroutes
Values: | yes|no
Default Value: | yes
Command Line: | -dtr
Description: | DoTraceroutes directs the monitor to create traceroute session objects to
track the behavior of individual traceroute sessions. A traceroute session
is identified by TTL time exceeded ICMP error messages.
Variable: | DoPingSessions
Values: | yes|no
Default Value: | yes
Command Line: | -dps
Description: | DoPingSessions directs the monitor to create ping session objects to track
the behavior of individual ping sessions. A ping session is identified by
ICMP echo requests and replies.
Variable: | MaxTraceroutes
Values: | number
Default Value: | none
Command Line: | -mtr
Description: | MaxTraceroutes directs the monitor to used the supplied number as the
maximum number of traceroute sessions tracked. If the number is reached
no new sessions will be tracked until an existing session closed.
Variable: | MaxPingSessions
Values: | number
Default Value: | none
Command Line: | -mps
Description: | MaxPingSessions directs the monitor to used the supplied number as the
maximum number of ping sessions tracked. If the number is reached no
new sessions will be tracked until an existing session closes.
Variable: | DolcmpAttackProxy
Values: | yes|no
Default Value: | no
Command Line: | -dicmpap
Description: | DolcmpAttackProxy directs the monitor to used the IcmpAttackProxy to
identify ICMP protocol layer attacks.
Variable: | ReportPingSessionsToDetails
Values: | yes|no
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Default Value: | yes
Command Line: | -rpd
Description: | ReportPingSessionsToDetails directs the monitor to send all Ping sessions
(ICMP echo requests/replies) to the details server.
Variable: | ReportTraceroutesToDetails
Values: | yes|no
Default Value: | yes
Command Line: | -rtrd
Description: | ReportTraceroutesToDetails directs the monitor to send all traceroute
sessions (a series of ICMP Time exceeded messages) to the details server.
Variable: | ReportPingsAsAttacks
Values: | yes|no
Default Value: | no
Command Line: | -rpaa
Description: | ReportPingsAsAttacks reports a ping session (ICMP echo request/reply) as
an attack.
Variable: | ReportTraceroutesAsAttacks
Values: | yes|no
Default Value: | no
Command Line: | -rtaa
Description: | ReportTraceroutesAsAttacks reports a traceroute session (a series of ICMP
Time exceeded messages) as an attack.
Variable: | DoTcpHosts
Values: | yes|no
Default Value: | yes
Command Line: | -dth
Description: | DoTcpHosts directs the monitor to track behavior if IP hosts.
Variable: | MaxTcpHosts
Values: | number
Default Value: | none
Command Line: | -mth
Description: | MaxTcpHosts directs the monitor to used the supplied number as the
maximum number of hosts tracked. If the number is reached no new hosts
will be tracked until an existing host session closes.
Variable: | DoSweepAnalysis
Values: | yes|no
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Default Value: | no
Command Line: | -dsa
Description: | DoSweepAnalysis directs the monitor to perform additional sweep
analysis when a client appears to be starting a large number of sessions or
has received a number of failed session requests.
Variable: | ReportStreamInfoToDetails
Values: | yes|no
Default Value: | yes
Command Line: | -rsid
Description: | ReportStreamInfoToDetails directs the monitor to send all stream reports
to the details server.
Variable: | SavePasswordInfo
Values: | yes|no
Default Value: | no
Command Line: | -spi
Description: | SavePasswordInfo directs the monitor to save password information when
processing login information by the stream LoginStream.
Variable: | SaveLogs
Values: | yes|no
Default Value: | yes
Command Line: | -sl
Description: | SaveLogs specifies whether the monitor should save audit records for the
various stream modules.
Variable: | RoleLogs
Values: | number defining the minutes for each log file
Default Value: | 60 (1 hour)
Command Line: | -rl
Description: | RoleLogs specifies the number of minutes between log file changes.
Variable: | DoTaggedRpcs
Values: | yes|no
Default Value: | no
Command Line: | -dtrpc
Description: | DoTaggedRpcs directs the monitor to report remote procedure calls

(RPCs) to specific program functions as attacks. For example, the RPC
server portmapper supports the function called dumpit(). This function
reports all registered RPC programs and is often used by attackers to
profile your system. You can call this program with the program rpcinfo:
% rpcinfo -p han
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The program and function numbers are specified in the file
RpcStreamSensitive.conf in Network Radar's Support directory.

Variable: | UsePatternExpertSystem
Values: | yes|no
Default Value: | no
Command Line: | -upes
Description: | UsePatternExpertSystem specifies whether pattern matches will be
mapped to attacks by the simple Pattern Expert System. These rules are
defined in the file PatternES_rules found in Network Radar's Support
directory. The pattern names used by PatternES_rules are defined in the
RX.conf, KMP.conf, or the FSM.conf files also found in support.
Variable: | DoVectorCollect
Values: | yes|no
Default Value: | no
Command Line: | -dvc
Description: | DoVectorCollect directs the monitor to archive two 128 dimensional
vectors representing the counts of byte values observed being sent by the
client and server in individual sessions. The monitor still needs to be
directed to place the VectorCollectStream on the appropriate streams; this
is done in the NratTcpStreams.conf and NratUdpStreams.conf files.
Variable: | DoWebCollect
Values: | yes|no
Default Value: | no
Command Line: | -dwc
Description: | DoWebCollect, like DoVectorCollect, collects vectors representing session
activity. However, whereas DoVectorCollect uses VectorCollectStream to
collect a single vector for each session, DoWebCollect uses
WebCollectStream which can collect several vectors for Web activity. We
needed to create a separate stream class for web traffic for two reasons.
First, we are only interested in analyzing a portion of a web transaction
(e.g., the data requested and not the data types a client can accept).
Second, newer web browsers and web servers will allow multiple
connections over a single connection, so each connection may need to
generate several vector sets (one for each web request).
Variable: | DoSavePackets
Values: | yes|no
Default Value: | no
Command Line: | -dsp
Description: | DoSavePackets directs nrat6 to save packets certain packets. For the

packets to be saved, it has to cross a boundary between a protected zone
and an unprotected zone, and it either its source or destination ports must
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belong to a specific set of numbers.

The file defining the "protected zone" is
$RADAR_DIST/Support/session_addr_files

It contains a set of addresses and netmask pairs. Together they define the
protected zone. Sessions crossing the zone will be candidates for having
their packets saved.

The file defining the sensitive ports is:
$RADAR_DIST/Support/session_port_file

If a session crosses the zone defined above, we then check to see if either
of its ports is in the session_port file. If so, we save the packets.

Variable: | ThumbprintPossibleCount
Values: | number 1-65535
Default Value: | 1
Command Line: | -tpc
Description: | ThumbprintPossibleCount directs the monitor to generate a multi-hop alert
(when someone connection from machine A to B to C), when the two
sessions appear similar for ThumbprintPossibleCount time periods. By
default, a time period is two minutes, and an alert is triggered when the
first match is detected. At some sites, in particular those with large login
banners, two connections occasionally trigger a false alert because two
independent users logged in, received the voluminous login banner, and
did nothing else. In these cases, you might want to increase
ThumbprintPossibleCount to 2 or 3. That is, you must balance the
timeliness of a report and the certainty the chance of false alerts.
Variable: | ThumbprintProbableCount
Values: | number 1-65535
Default Value: | 3
Command Line: | -tprc
Description: | Like ThumbprintPossibleCount, ThumbprintProbableCount directs the
monitor to generate a multi-hop alert when two sessions appear similar for
ThumbprintProbableCount time periods. The primary difference is that
(assuming ThumbprintProbableCount is larger than
ThumbprintPossibleCount), the certainty of the alert will be higher.
Later alerts will by default be generated every 10 time periods (roughly 20
minutes) the connections appear to be the same.
Variable: | DoUdpDhcpProxy
Values: | yes|no
Default Value: | no
Command Line: | -dudp
Description: | DoUdpDhcpProxy directs the monitor to use the UdpDhcpProxy to
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process DHCP activity. Right now, the DHCP proxy is just a stub that
prints out a very small amount of information.
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