Towards Detecting Intrusions in a
Networked Environment

L. Todd Heberlein, Biswanath Mukherjee
Karl Levitt, Gihan Dias

Computer Security Laboratory
Division of Computer Science
University of California
Davis, California 95616
(916) 752-2149
heberlei@iris.eecs.ucdavis.edu

Douglass Mansur

Lawrence Livermore National Laboratory
Livermore, Ca. 94550

Abstract

To date, current access control mechanisms have
been shown to be insufficient for preventing intrusive
activity in computer systems. The frequent media reports,
and now our own research, have shown the widespread
proliferation of intrusive behavior on the world's computer
systems. With the recognition of the failure of access
control mechanisms, a number of institutions have begun to
rescarch methods to detect the intrusive activity. The
majority of this research has focused on analyzing audit trails
generated by operating systems. We, on the other hand,
have chosen to analyze the traffic on computer networks.
The result of our effort is a suite of tools, collectively called
the Network Security Monitor (NSM). This paper presents
the methods used to represent and analyze traffic on the
network for detecting intrusive activity. We also present two
tools designed to further analyze network connections
decmed intrusive. Finally, we present the successful and
surprising results from the NSM.

1 INTRODUCTION

To date, authentication and access control
mechanisms have been shown to be insufficient for
preventing intrusive behavior in computer systems {2,13].
Almost weekly reports about outsiders breaking into
computers or about employees misusing computer systems
appear in the media. With the proliferation of both computer

Department of Energy Computer Security Group
14th Annual Conference Proceedings

17 - 47

networks as well as workstations and personal computers
connected to them, more and more people will continue to
have electronic paths to a larger number of computers.
Furthermore, these computer systems are often administered
by people with Iittle or no formal training in system
administration or computer security. The result is that more
people have access to a larger number of possibly less secure
computers. There is little doubt that intrusions in computer
systems will continue.

With the recognition that current access control
mechanisms and administrative policies have not provided
adequate security, a number of projects have been started to
develop systems that can identify intrusive behavior 1n a
computer system [2,5,7,9,11,12,13,14]. These systems,
called intrusion detection systems (IDS), analyze records of
computer activity to identify potential intrusions. The
records of computer activity are generally audit trails
generated by host operating systems. Unfortunately, by
using an operating system gencrated audit trail, an IDS can
be restricted to a particular operating system. Furthermore,
audit trails have themselves been the target of subversion by
intruders, thereby rendering the analysis of the audit trails
suspect. Finally, due to the processing and storage costs
associated with the collection of audit trails, many
administrators choose not to collect audit information.

Lawrence Livermore National Laboratory and the
University of California at Davis recognized the growth of
computer networks, the heterogeneous nature of the
computer environment (everything from Crays to personal
computers use the same networks), the need for the
immediate deployment of intrusions detection systems, and
the potential drawbacks of audit trail based IDS.
Consequently, we began to study the potential of analyzing
network information. By developing an IDS which
monitors data transmitted on a broadcast Local Areca
Network, we could analyze intrusions on many different
types of hosts. Furthermore, the network based IDS would
not be affected by either the quality of the administration
given to the hosts on the network or the security of the audit
trails, and we would not necessarily burden the hosts being
monitored. The result of this on-going research is a system
called the Network Security Monitor (NSM)[7]. The NSM
is actually a suite of tools for detecting and analyzing
computer abuse. The methods by which the NSM detects
intrusions, the tools to analyze the intrusions, and the
promising early results from the NSM are the focus of this
paper.

In section 2, we provide a description of the
environment for which the NSM is developed, and we
provide the requirements and constraints for the development
of the NSM. In section 3, we provide the theoretical
framework underlying the detection of intrusive behavior in
a network. In section 4 we relate the theory introduced in
section 3 to the particular problem of detecting intrusions in

17 - 48 Department of Energy Computer Security Group
14th Annual Conference Proceedings

our networked environment. In section 5, we present two
tools to perform further analysis on a particular network
connection. In section 6, we present results from using the
NSM. And in section 7, we discuss future research related
to our work with the NSM.

2 ENVIRONMENT AND REQUIREMENTS

In this section we present the environment for which
the NSM is targeted and the requirements and constraints
placed upon the development of the NSM.

The target environment, which needs to be protected
from intrusive activity, consists of a number of host
computers (including devices such as file servers, name
servers, printers, etc) and a ILAN through which the hosts
are interconnected. The hosts consist of a variety of
hardware platforms and operating systems. The LAN is
assumed to employ a broadcast medium (eg., Ethernet), and
all packets transmitted over the LAN are potentially available
to any device connected to the network. The ILAN is also
assumed to be physically secure, in the sense that an intruder
will not be able to directly access the network hardware such
as the connecting medium (cable) and the network interface
at each host. The LAN is connected to the outside world via
one or More gateways.

The hosts on the LAN may connect, or attempt to
connect, to any other host at any time by any network
service. The hosts can generate as many connections as they
wish, and connections can last for any amount of time.
Hosts may be added or removed from the network at any
time.

The NSM designed to monitor this complex and
dynamic environment must be built from off-the-shelf
hardware. Furthermore, the software must be portable to a
varicety of platforms. Finally, the NSM must be capable of
detecting currently known types of intrusive behavior, and it
must provide mechanisms for the detection of previously
unknown intrusive behavior.

3 DETECTING BEHAVIOR IN A SYSTEM

This section provides the theoretical framework for
the NSM's intrusion detection mechanism. The problem of
detecting intrusions in the interconnected computing
environment 1s abstracted out to detecting any behavior in a
complex system. A methodology for solving this abstract
problem is presented.

The problem we must solve is the identification of
intrusive behavior in the interconnected computing
environment (ICE). Since the ICE consists of network
packets, network connections, hosts, bridges, and other
components working in some orderly fashion, the ICE can
be considered a "system,” where a system is defined to be "a
group of things or parts connected in some way as to form a
whole." [6] The ICE system is both complex, in that it is
composed of sub-parts which are in turn systems, and 1t is

Department of Energy Computer Security Group 17 - 49
14th Annual Conference Proceedings

dynamic, in that the composition of the system changes over
time. Our problem can therefore be generalized to finding a
particular behavior in a complex and dynamic system. If a
solution can be found to the generalized problem, then a
solution to our specific problem is reduced to defining the
the ICE as a system.

By providing a solution to the general problem of
finding behaviors 1n systems, we provide a methodology {
which is useful beyond the scope of detecting intrusions in a
networked environment. Furthermore, a definition, in the
format given below, of any complex and dynamic system
provides the specification needed to implement behavior
detection software for that system. Finally, the specification
of the system provided by the definition may be strong
enough to provide for automatic code generation for the
majority of the behavior detection software.

Section 3.1 provides a brief description of attribute
grammars, the ancestors of our system description language,
and section 3.2 continues the discussion with the
introduction to the system description language.

3.1 Attribute Grammars

Attribute grammars describe both the strings accepted
by a language and a method to determine the "meaning” of
those strings. An attribute grammar consist of a context {ree
grammar, a sct of attributes for each symbol in the grammar,
and a set of functions defined within the scope of a
production rule in the grammar to determine the values for
the attributes of each symbol in that production. [1] The
following example of an attribute grammar for the definition
and interpretation of binary numbers” will be used to clarify
the relationships between three components of an attribute
grammar.

The context free grammar for our language of binary
numbers is defined by G = (V,N,P.S) where V is the set of
symbols, N is the set of nonterminal symbols, P is the set of
production rules, and S, an element of N, is the start
symbol. The set of terminal symbols, a subset of V, is
{1,0,.}. These are the ASCII characters one, zero, and
period. The set of nonterminal symbols, N, is {B,L,N}.
They represent the abstract objects bit, list of bits, and
number. The start symbol for our attnbute grammar for
binary numbers is N, the abstract number. The set of
production rules relating these symbols and providing the
definition of acceptable strings 1s given in figure 1.

By this context free grammar, we can see that the
string 11.01 is an acceptable binary number. The parse tree
for this string is given in figure 2.

The context free grammar can be used to build a
parse tree of a string and determine whether the string is
valid in the language; however, the context free grammar can

* This example is taken from [8]-

17 - 50 Department of Energy Computer Security Group
14th Annual Conference Proceedings

not be used to find the meaning of the string. The addition
of attributes and attribute functions are necessary to
determine the meaning of the string.

The set of attributes, A, for each for each
nonterminal are given as follows: A(B) = {v}, AQL) = {v,/},
and A(N) = {v}. The attribute v is the value of a symbol,
and the attribute / is the length of a symbol.

The set of functions defined with in the scope of each
production rule is given in figure 3.

By using the attributes for each symbol and the
attribute functions, we can now assign meaning to each
symbol in the parse tree (see figure 4). For our language of
binary numbers, the most important meaning is that of the
start symbol N. Our string 11.01 now has the meaning of
3.25.

3.2 System description language

This section introduces the system description
language, an extension of attribute grammars. The system
description language provides the structural definition of a
system, the "meaning" of the system and system
components, and a means to determine if a behavior is
present in any part of the system.

A system description language consists of a
structural grammar, a set of attributes for each object, or
symbol, in the structural grammar, a set of functions defined
within the scope of a production rule of the structural
grammar to determine the attribute values for each object in
that production, and behavior detection functions defined for
each object in the structural grammar. The set of attributes
for each object and the set of attribute functions are quite
similar to those of attribute grammars, so they will not be
discussed further. On the other hand, the structural grammar
1s different than that of context-free grammars, and behavior
detection functions do not exist in attribute grammars;
therefor, these elements of the system description language
will be discussed in further detail.

3.2.1 Structural grammar

The structural grammar, similar to a context-free
grammar, provides the information about the structure of the
system. However, unlike a context-free grammar, the
structural grammar requires attribute information to
determine the parse tree for the system. The structural
information of a system is defined by the structural grammar
G = (0,C.8,P), where O i1s the set of all objects; C <O is
the set of complex objects; S e C is the system level object;
and P is the set of production rules giving the relationships
between the elements of . Each of these sets are described
in more detail below.

O is the set of objects which compose the system.
The set can be partitioned into two subsets: a set of basic

Department of Energy Computer Security Group 17 - 51
14th Annual Conference Proceedings

objects and a set of complex objects. Basic objects are
atomic elements, and, therefore, they cannot be
decomposed. Basic objects are the only objects of the
system which can be directly observed. They are similar to
terminal symbols in traditional programming languages.

C, a subset of O, is the set of complex objects in the
system. Complex objects are composed of other complex
objects and/or basic objects. Complex objects are abstract
objects and are not observed directly; they must be created
by assembling basic objects into the necessary format.
Complex objects are similar to non-terminal symbols in
traditional programming languages.

S, an element of C, is the system level object. S is
the complex objects which represents the entire system. S
cannot be an element of any other complex objects, so it
cannot occur on the right hand side of any production. S,
the system level object, is similar to the start symbol in
traditional programming languages.

P, the set of production rules, provides the
acceptable relationships between objects in the system.
Production rules for a system, although similar to production
rules for context-free grammars, require knowledge about
some of the attributes for each of these objects. For
example, the production rule

OBJECT_1 > {OBJECTS_2)

states that an element of type OBJECT _1 is a complex object
composed of zero or more complex objects of type
OBJECT_2. Unlike context-free grammars, the set of
elements of type OBJECT_2 which compose an element of
type OBJECT_1 is based not on the order of appearance of
the other elements, but on the certain attributes of the
elements of OBJECT_1 and OBJECT2. To include this
information, our production rule must be modified to include
this information, so our production rule becomes:

OBJECT_1 -> [OBJECTS_2)
where for each 02 € {OBJECTS_2)
OBJECT_1.atribule_m = o2.attribute_n
OBJECT _l.attrubite_m+1 = o2.atiribute_n+1

OBJECT _1.attribute_m+i = o2.attribute_n+i

The production rule now states that an element of type
OBJECT_1 is composed of a set of elements of type
OBJECT_2 such that all elements of type OBJECT_2 have
particular attributes which equal particular attributes of the
element of type OBJECT_1. In general, elements of
{OBJECTS_2} will have attributes which must satisfy a
particular set of conditions. The set of conditions may or
may not be based on attributes in OBJECT _1.

Another manner in which the structural grammar
differs from context free grammars is that structural

17 - 52 _ Department of Energy Computer Security Group

14th Annual Conference Proceedines

grammars include the notion of time, and this notion of time
introduces dynamics to a system parse tree. An element in a
system can be considered active or inactive depending on the
time which has passed since the element's attributes have
changed. An inactive element may be pruned from the
system parse tree. The notions of active and inactive can be
used in the calculation of an object's attributes. This will be
seen later.

3.2.2 Behavior detection functions

Once the structural grammar, attributes, and attribute
functions have been defined, a second set of functions,
behavior detection functions, must be defined for each object
in the structural grammar. Behavior detection functions
determine whether an object is associated with the particular
behavior of interest. Because a behavior may manifest itself
differently or more clearly in different object types, each
object in a system parse tree must be examined for the
behavior by particular behavior detection functions designed
for that object type. For each type of object, there will be
two behavior detection functions: the isolated behavior
detection function, and the integrated behavior detection
functions. These two function types are discussed below.

An isolated behavior detection function for an object
uses the attributes of that object to calculate the probability
that the object is associated with the behavior of interest. In
short, an isolated behavior detection function is a classifier.
With some preprocessing to transform the attribute types, a
large number of classifiers can be used.

Unfortunately, classifiers generally have to be trained
with sample data, and the behavior of interest is often quite
rare. There are at least two possible solutions to the problem
of lack of sample data: expert systems and single behavior
classifiers. An expert system, designed by people
knowledgeable about the problem domain, can use heuristics
to determine how close an object is to the behavior of
interest. A single behavior classifier is built around the
assumption that a rare behavior will be significantly different
than normal behavior. If this is true, a single classifier can
profile normal behavior, and then it could report any
behavior which does not strongly resemble normal behavior.
Work on such single behavior classifiers have been done by
SRI for IDES and Los Alamos National Laboratories for
Wisdom and Sense. For our particular problem
environment, we combined the efforts of both an expert
system and a single behavior classifier.

An integrated behavior detection function for an
object modifies the result of the isolated behavior detection
function by including the analysis of the isolated behavior
detection functions for sub-componenents and super-
components. Sub-components and super components are
define by the following rule:

Department of Energy Computer Security Group
14th Annual Conference Proceedings

If object A is a component of object B, then A is a sub-
component of B, and B is a super-component of A.

The meodification by an integrated behavior detection
function allows the inclusion of both the results of
aggregated analysis (those from super-components) and the
results of more detailed levels of analysis (those from sub-
components). The integrated behavior detection function can
be implemented by a weighted average function (see figure
5).

The relationship between an object's attributes, the
isolated behavior detection functions, and integrated
behavior detection functions can be seen in figure 6. In this
example, we are interested in analyzing the object B for a
particular behavior. The object B] is composed of objects
C1 and C2, and it is part of the object A1. Result By is the
analysis of object B1 in isolation, and result By is the
result after combining the result of By with the results from
objects C1, C2, and Aj.

What has been presented up to this point is a
methodology to detect behaviors in complex and dynamic
systems. The system description language provides both a
method to model a system and a specification for software to
detect a particular bebavior in that system. The next step is
to apply the system description language to our
interconnected computing environment.

4 DETECTING INTRUSIONS IN AN ICE

To detect intrusions in an interconnected computing
environment, we usc the system description language to
model the ICE, and we choose intrusiveness to be the
behavior of interest. The model of the ICE will be called the
interconnected computing environment model, or ICEM.
Section 4.1 provides a high level, English description of the
ICEM, and section 4.2 provides some of the detail of the
actual ICEM.

4.1 High level ICEM description

The ICEM is composed of five different types of
objects: the packet, the stream, the connection, the host, and
the system. Each of these objects are described in detail
below. Following the descriptions of each of the objects,
we discuss the isolated behavior detection function for
connections.

The packet 1s the only basic object of the system;
only packets are observed directly. Once a packet has been
pulled off the network, a set of attributes 1s assigned to the
packet. These attributes are the source address, the
destination address, the protocol (currently, either TCP/IP or
UDP/IP), the source port, the destination port, the number
of bytes of data in the packet, the list of bytes for the data,
and the time for which the packet was observed. The packet
uses its source address, destination address, protocol,

17-54 Department of Energy Computer Security Group
14th Annual Conference Proceedings

source port, destination port, and time stamp to determine to
which stream the packet belongs.

The stream is a complex object consisting of packets.
A stream represents a unidirectional flow of data from a
process on one computer to a process on another computer.
The attributes of a stream are the source address, the
destination address, the protocol, the source port, the
destination port, the start time, the last update time, the total
number of packets, the total number of bytes, and a string
matcher. The addresses, protocol, and ports are used to
determine which packets belong to each stteam. The start
time is the time of the first packet observed, and the last
update time is the time of the most recent packet for this
stream observed. The total number of packets is the number
of packets observed for this stream. The total number of
bytes 1s the sum of number of bytes in all the packets for the
stream. The string matcher is a complex object used to
search the data for specific strings, and it deserves a little
more attention.

The string matcher is a list of four-tuples consisting
of a string identifier, a counter, a state, and a set of transition
functions. The counter indicates the number of times the
string, indicated by the string identifier, has been matched in
the data from the packets. The state and transition functions
describe the deterministic finite automaton (dfa) used to
1dentify the strings. The dfa is constructed using a modified
Knuth-Morris-Pratt string matching algorithm. The number
of times the strings "lLogin incorrect” or "Permission denied”
have occurred in this data stream can be determined. We
have also included a special string in our password files
which when observed, indicate that a password file has
moved across the network.

A connection 1s a bidirectional flow of data on the
network between a process on one machine and another
process on a second machine. [t consist of two streams of
data. For example, one stream may be the keystrokes an
intruder typed in, and the second stream could be the data
sent by the computer to the intruder in response to the
keystrokes. Our current efforts in intrusion detection has for
the most part concentrated on connection objects.

The attributes for a connection are the initiator
address, the receiver address, the protocol, an initiator port,
a receiver port, a service name, a start time, the last update
time, the number of packets from the initiator host, the
number of bytes from the initiator host, the strings matched
from the initiator host, the number of packets from the
receiver host, the number of bytes from the receiver host,
and the strings matched from the receiver host. The initiator
host 1s the host which initiated the connection, and the
receiver host is the host to which the connection was made.

A host is the network view of a computer. Thus a
host in our model is defined by the network traffic generated
by it or for it. The host's attributes are the host's internet
address, the number of packets sent {rom the host, the

Department of Energy Computer Security Group 17 - 55
14th Annual Conference Proceedings

number of bytes sent from the host, the strings matched in
data from the host, the number of packets sent to the host,
the number of bytes sent to the host, the strings matched in
data sent to the host, total number of connections to or from
this host, and the current number of connections to and from
this host.

Finally, the system is the summation of all the data
on the network. Its attributes are the number of packets
observed, the number of bytes observed, the number of each
string observed, and the current number of host active on the
network. -
As mentioned previously, our cfforts for detecting
intrusive behavior has concentrated on connection objects.
For our isolated behavior detection function, we combine the
efforts of an anomaly detection system and an expert system.

The anomaly detection system calculates both the
probability of the initiator establishing a connection to the
receiver host by the given service and normality of the
connection. The normality of the connection is based on
how closely the given connection compares to connections
of the same type of service. We have, therefor, compiled a
profile for all of the NSM's currently known services.

The expert system is based on our own personal
judgments as to what intrusive behavior should look like.
Our personal judgements are, in turn, based on observed
past intrusive activity. For example, there are very few
legitimate reasons for a password file to cross a network.
On the other hand, we have seen password files cross the
network 1n order to crack the passwords on another
machine. Thus, seeing a string associated with a password
file would cause the connection to be rated very close to
intrusive behavior. o

The results of the anomaly detection system and the
expert system are combined by a weighted average to arrive
at a consensus. Currently, we have found the expert system
more successful than the anomaly detection system, so the
expert system's results are given greater weight.

4.2 Interconnected Computing Environment Model

We now present a portion of the formal ICEM. To
present the entire structural grammar for our system would
be to lengthy for this particular publication. For the complete
ICEM, please contact the author.

The 1ICEM is defined in part by the structural
grammar G = (0,C,S,P), where O, C, S, and, P are
defined as follows:

O = {PACKET, STREAM, CONNECTION, HOST,
NETWORK_SYSTEM)

C = (STREAM, CONNECTION, HOST, NETWORK_SYSTEM)

S = NETWORK_SYSTEM

and P is defined to be the following set of production rules:

17 - 56 Department of Energy Computer Security Group
14th Annual Conference Proceedings

SYSTEM -> {HOST)

HOST -> {CONNECTION})
where for all c € {CONNECTION]}
{((HOST host_addr = c.initiator_addr)
or (HOST.host_addr = c.recciver_addr))

CONNECTION -> (STREAM]}
where for all s € ([STREAM})

(CONNECTION.protocol = s.protocol,
((CONNECTION.initiator_addr = s.src_addr,
CONNECTION.receiver_addr = s.dst_addr,
CONNECTION.initiator_port = s.src_port,
CONNECTION.receiver_port = S.dst_port)
or {(CONNECTION.initiator_addr = s.dst_addr,
CONNECTION receiver_addr = s.sr¢_addr,
CONNECTION.1nitiator_port = s.dst_port,
CONNECTION.receiver_port = s.src_port)))

STREAM -> {PACKET}
where for all p e {PACKET])
(STREAM.src_addr = p.src_addr,
STREAM.dst_addr = p.dst_addr,
STREAM protocol = p.protocol,
STREAM.src_port = p.src_port,
STREAM . dst_port = p.dst_port)

The semantic attributes, A(), for all the objects are as
follows:

A(SYSTEM) = (pkts, bytes, strings_matched, current_host_num)

A(HOST) = {host_addr, pkts_from_host, bytes_from_host,
strings_matched_from_host, pkts_to_host, bytes_to_host,
strings_matched_to_host, current_connection_num}

A(CONNECTION) = {initiator_addr, receiver_addr, protocol,
initiator_port, recciver_port, scrvice, start_time,
last_update_time, pkts_from_initiator, bytes_from_initiator,
strings_matched_from_initiator, pkts_from_receiver,
bytes_from_receiver, strings_matched_from_receiver)

A(STREAM) = (src_addr, dst_addr, protocol, src_port, dst_port,
start_time, last_update_time, total_pkts, total_bytes,
string_matchers}

A(PACKET) = {src_addr, dst_addr, protocol, src_port, dst_port,
num_of_bytes, data, time}

The attributes for a packet are determined by a packet
analyzer which is similar to a lexical analyzer - it picks
tokens out of the stream of data. The attribute functions for
all attributes for all objects would be to numerous to be
presented here; however, an overview of the attribute
function definitions for one one production, HOST ->
{CONNECTION}, are given in figure 7.

Department of Energy Computer Security Group
14th Annual Conference Proceedings

17 - 57

5 ANALYZING CONNECTIONS

As this project progressed, we found a strong need
for tools which would assist a human to examine objects in
the system. For example, if someone logs into a computer
from a host never seen before, and if that user generates a
number of "Permission denied"s, the NSM will generate a
very high warning value of suspicious behavior for that
connection. However, security officers needs to know more
than just the fact that an intrusion has occurred; the security
officer also needs to know exactly how the intrusion
occurred (eg. a stolen password), what the intruder saw (that
is, what data has been compromised), and what changes the
intruder may have made (eg. installing a new account for
future entries). In other words, the NSM needs to provide
tools not to just detect intrusions, but it needs to provide
tools to analyze intrusions as well.

To this end, we have developed two tools, transcript
and playback, to analyze CONNECTIONS and their
associated data STREAMs.

5.1 Transcript

The transcript tool operates on a CONNECTION and
generates two ASCII files, each containing the unidirectional
data flow associated with each STREAM. A header is
placed at the beginning of each file providing information
associated with the connection (the initiator host, the receiver
host, the service, the time of the connection, strings
matched, etc). The user of the NSM can examine these files
with an editor or send them out to a printer.

FFor telnet connections, one file contains the
keystrokes the intruder typed in, and the other file contains
the data sent to the intruder's screen. The file containing the
data sent to the intruder's screen looks very similar to a file
created by the UNIX script command. Thus all commands
and command results can be observed.

Unfortunately, if the intruder executes a program,
such as a visual editor, which generates screen control
characters, these linear transcript files can be difficult to
read. To solve this problem, we created a second tool,
playback, to properly interpret these control characters.

5.2 Playback

The playback tool writes the data, including all
screen control data, from one of the STREAMS associated
with a CONNECTION directly to the screen. If playback is
run in a screen or window environment which is the same as
the intruder's, the screen display will be exactly the same as
what the intruder sees. Furthermore, since each packet is
time stamped, the timing associated with the intrusion is also
reproduced.

This program has been used to observe intruders
editing password files with an emacs screen editor.
Playback has also been used a number of times to observe

17 - 58 Department of Energy Computer Security Group
14th Annual Conference Proceedings

intruders communicating with a fellow hacker with the talk
program. Information gained by observing these intrusions
with the playback program would be difficult, if not
impossible, to obtain through linear data printouts.

6 RESULTS FROM THE NSM

The current version of the NSM runs on a Sun-4
workstation, and it is written in C. The NSM consists of
four separate modules: network recorder,
network_analyzer, transcript, and playback. The
network_recorder captures the packets off the network, time
stamps each packet, and either directs this data to a file or to
the network_analyzer. The network _analyzer accepts data
from the network recorder or from a file created by the
network recorder, analyzes the ICEM for intrusive activity,
and generates a log of objects and their associated warning
value. If the network traffic is recorded in a file, transcript
accepts a connection identifier (which specifies a particular
connection in the log file created by network _analyzer) and
generates the associated ASCII files. Similarly, playback
accepts a connection identifier and plays the data from the
connection directly to the screen.

Currently we operate the NSM in a batch mode. The
network _recorder runs twentyfour hours every day of the
week; each morning we process the previous twentyfour
hours of activity with the network_analyzer; and we process
the top ten to twenty connections with transcript to verify the
legitimacy or illegitimacy of the connections. Occasionally,
playback is used to perform further analysis of a connection.

During a period of two months of testing, over
110,000 connections were analyzed, and the NSM identified
correctly over 300 of these connections as being associated
with intrusive behavior. These intrusive connections were
associated with over 40 different computers, at least four
different hardware platforms, and at least six different
operating system types (including several flavors of UNIX).
The majority of these intrusive connections were associated
with attempted break-ins. Successful break-ins occurred on
six machines made at three different sites. Other incidents
included people acquiring password files from other sites,
people running password crackers on password files, ex-
employees and ex-students trying to access their closed
accounts, people reading other people's mail files, people
attempting to look around other pcople's directories, and
people using other people's accounts.

Out of all these recorded connections of intrusive
activity, only eight of them were detected by system
administrators or the user community. Of the eight
identifications, five of them were made by members of our
security laboratory who observed attempted penetration of
our security lab machines. Therefore, only three of the
roughly 300 connections associated with intrusive behavior
were identified without the aid of the NSM.

Department of Energy Computer Security Group
14th Annual Conference Proceedings

7 FUTURE RESEARCH

The work on the NSM is far from over. The higher
order objects of the ICEM, and their associated secondary
functions to detect intrusive behavior will probably be
modified as we gain more experience in intrusion detection.
Secondary functions to detect other behaviors are being
considered as well. These functions include those which
identify specific classes of intrusive behavior, identify
objects behaving within a specified policy, and identify
failures in network components.

Beyond the work for a single NSM, we plan to look
at the coordination of the efforts of multiple, NSMs
distributed over different parts of a wide area network.
Coordinating effort would allow successful tracking of
intruders as they cross network boundaries. Furthermore,
the combination of multiple monitors would provide another
method of aggregating warnings of subtle attacks distributed
over disparate areas.

Our current work includes the integration of the
NSM into a distributed intrusion detection system. This
system, called DIDS (Distributed Intrusion Detection
System), combines the efforts of host based and network
based monitors to benefit from the advantages of both types
of monitors.

Finally, we are looking at casting other environments
into the system model. For example, the dynamic
environment of the host can be modeled with the following
objects: operating system calls, processes, users, and the
host. Behavior functions to determined whether each
operating system call, process, user, and host is behaving in
an intrusive manner could draw upon the work by SRI,
[LANL, TRW, and others designing host based intrusion
detection systems. The process described here could also be
used to detect behaviors in dynamic and complex mechanical
and biological systems.

8 CONCLUSIONS

As government reports, recent books, and the
popular media have stated, our computers systems are
vulnerable to attack. Authentication and access control
mechanisms to prevent intrusive activity have obviously not
been wholly successful, so a second layer of defense,
intrusion detection, is needed. We took on the task of
developing an intrusion detection system capable of
simultaneously detecting intrusive behavior on many hosts
running many versions of operating systems. To solve this
problem, we developed a model to detect behaviors in
dynamic and complex systems. We then mapped the
interconnected computing environment into this model, and
we defined secondary functions to detect intrusive behavior
on objects in our model. Finally we have designed tools to
allow a user to examine in detail connections on the network.
Current results show this system to be very successful.

17 - 60 Department of Energy Computer Security Group

14th Annnal Conference Proceedinoc

References

1. G.V. Bochmann, "Semantic Evaluation from Left to
Right,” Communications of the ACM, vol. 19, no.
2, pp- 55-62, Feb. 1976.

2. D.E. Denning, "An Intrusion Detection Model,"
IEEE Trans. on Software Engineering, vol. SE-13,
no. 2, pp. 222-232, Feb. 1987.

3. D.E. Denning, a conversation with L. Todd
Heberlein, December 6, 1990

4, Department of Defense Trusted Computer System
Evaluation Criteria, Dept. of Defense, National
Computer Security Center, DOD 5200.28-STD,
Dec. 1985.

5. C. Dowell and P. Ramstedt, "The
COMPUTERWATCH Data Reduction Tool," Proc.
13th National Computer Security Conference, pp.
99-108, Washington, D.C., Oct 1990.

6. D.B. Guralnik, ed. Webster's New World
Dictionary, (Simon and Schuster, 1980).

7. LL.T. Heberlein, et al., "A Network Security
Monitor,” Proc. 1990 Symposium on Research in
Securiry and Privacy, pp. 296-304, May 1990.

8. D.E. Knuth, "Semantics of Context-Free
Languages," Math Systems Th. 2 (1968), 127-145.
Correction appears in Math Systems Th.5 (1971),95.

9. T.F. Lunt, et al., "A Real Time Intrusion Detection
Expert System (IDES)," Interim Progress Report,
Project 6784, SRI International, May 1990.

10. M.M. Sebring, et al., "Expert Systems in Intrusion
Detection: A Case Study," Proc. 11th National
Computer Security Conference, pp. 74-81, Oct.
1988.

11. S.E. Smaha, "Haystack: An Intrusion Detection
System," Proc. IEEE Fourth Aerospace Computer
Security Applications Conference, Orlando, FL,
Dec. 1988.

Department of Energy Computer Security Group 17 - 61
14th Annual Conference Proceedings

12, W.T. Tener, "Discovery: an expert system in the
commercial data security environment,” Security and
Protection in Informations Systems: Proc. Fourth
IFIO TC11 International Conference on Computer
Security, North-Holland, May 1988.

13, H.S. Vaccaro and G.E. Liepins, "Detection of
Anomalous Computer Session Activity," Proc,
Symposium on Research in Security and Privacy,
pp- 280-289, Oakland, CA, May 1989.

14. J.R. Winkler, "A Unix Prototype for Intrusion and
Anomaly detection in Secure Networks," Proc. 13th
National Computer Securiry Conference, pp. 115-
124, Washington, D.C., Oct. 1990.

17 - 62 Department of Energy Computer Security Group
14th Annual Conference Proceedings

N - LL

N-—-L
L—LB
L—-B
B—-1
B—-0
Figure 1
N
L/ I \L
/ N\ /N
T B L B
| | | |
B 1 B 1
| |
1 0
Figure 2
N - Lijlo v(N) = v(L) + V(L2)/2102)
N-L y(N) = v(L)
L1 — LyB v(L1) = 2v(Ly) + v(B), I(1.1) = i(Lp)+1
L 5B v(L) = v(B), I(L) = 1
B -1 V(B) = 1
B—0 v(B) =0
Figure 3
Department of Energy Computer Security Group 17-63

14th Annual Conference Proceedings

N

L (v=1,1
1

é (v=1)

1

T

L (v=3,1=2)

=1)

B
|
1

N (v=3.25)

L (v=1,1=2)
///// \\\\
(v=1) L (v=0,1=1) B (v=1)
| |
B (v=0) 1
|
0
Figure 4

W1 *(isolated result) + W2 *(super-component results) + W3*(sub-component results)

object A1

object B,

object C;

object C,

17 - 64

b —]
b o
b 3—W
b4 —

W1

+ W2 + W3

Figure 5

iv?

DA

C | —
C o
C 3t
C 4~

v

Cl——->
C 2——"*
C3—>~

C4——.>

AN

!
\\\\I\\\‘

isclated behavior
detection function
for objects of type A

isolated behavior
detection function
for objects of type B

integrated behavior
detection function
for objects of type B

NNNNN B NN\

isolated behavior
detection function
for objects of type C

]

Figure 6

Department of Energy Computer Security Group
14th Annual Conference Proceedings

HOST.pkts_from_host = 3. c.pkts_from_initiator

ce C1
HOST.bytes_from_host = Y c.bytes_from_initiator
ce Cl1
HOST.strings_matched_from_host = Y c.strings_matched_from_initiator

ce Cl

HOST.pkts_to_host = Y c.pkts_from_initiator
ce C2

HOST.bytes_to_host= ¥ c.bytes_from_initiator
ce C2

HOST.strings_matched_to_host = Y c.strings_matched_from_initiator
ce C2

where forallc e Cl1

(c e {CONNECTION},
HOST . host_addr = c.initiator_addr)

and forallc e C2

(c € {CONNECTION},
HOST .host_addr = c.receiver_addr)

Iagure 7

Department of Energy Computer Security Group 17 - 65
14th Annual Conference Proceedings

CONF-9105126

14th Department of Energy
Computer Security Group Conference

Proceedings

Concord, California May 7 -9,1991
Lawrence Livermore National Laboratory

"Computer Security - A Personal Commitment”

U.S. Department of Energy
Office of Administration and Human Resource Management
Office of Information Resources Management Policy, Plans and Oversight
and
Office of Sccurity Affairs
Office of Safeguards and Security

