DIDS (Distributed Intrusion Detection System) — Motivation,
Architecture, and An Early Prototype

Steven R. Snapp', James Brentano®, Gihan V. Dias, Terrance L."Goan,
L. Todd Heberlein, Che-Lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E. Smaha',
Tim Grance®, Daniel M. Teal®, and Doug Mansur®

Computer Security Laboratory

Division of Computer Science

University of California, Davis
Davis, California 95616

ABSTRACT

Intrusion detection is the problem of identifying unauthorized use, misuse, and abuse of
computer systems by both system insiders and external penetrators. The proliferation of
heterogeneous computer networks provides additional implications for the intrusion detection
problem. Namely, the increased connectivity of computer systems gives greater access to
outsiders, and makes it easier for intruders to avoid detection. IDS’s are based on the belief
that an intruder’s behavior will be noticeably different from that of a legitimate user. We are
designing and implementing a prototype Distributed Intrusion Detection System (DIDS) that
combines distributed monitoring and data reduction (through individual host and LAN moni-
tors) with centralized data analysis (through the DIDS director) to monitor a heterogencous
network of computers. This approach is unique among current IDS's. A main problem con-
sidered in this paper is the Network-user Ideatification problem, which is concemed with
tracking a user moving across the network, possibly with a new user-id on each computer.
Initial system prototypes have provided quite favorable results on this problem and the detec-
tion of attacks on a network. This paper provides an overview of the motivation behind
DIDS, the system architecture and capabilities, and a discussion of the early prototype,

1. Introduction

Intrusion detection is defined to be the problem of identifying individuals who are using a computer sys-
tem without authorization (i.e., crackers) and those who have legitimate access to the system but are exceeding
their privileges (i.c., the insider threaf). Work is being done elsewhere on Intrusion Detection Systems (IDS's)
for a single host {8, 10, 11] and for several hosts connected by a network {6,7,12]. Our own earlier work on the
Network Security Monitor (NSM) concentrated on monitoring a broadcast Local Area Network (LAN) [3].

The proliferation of heterogeneous computer networks has serious implications for the intrusion detection
problem. Foremost among these implications is the increased opportunity for unauthorized access that is pro-
vided by the network’s connectivity. This problem is exacerbated when dial-up or intemetwork access is
allowed, as well as when unmonitored hosts (viz. hosts without audit trails) are present. The use of distributed
rather than centralized computing resources also implies reduced control over those resources. Moreover, multi-
ple independent computers are likely to generate more audit data than a single computer, and this audit data is
dispersed among the various systems. Clearly, not all of the audit data can be forwarded to a single IDS for
analysis; some analysis must be accomplished locally.

! Haystack Laboratories, Inc., 8920 Business Park Dr, Suite 270, Austin, TX 78759
§ Pacific Gas and BElectric Company, 77 Beale St, Room 1871B, San Prancisco, CA 94106
4 United States Air Force Cryptologic Support Center, San Antonio, TX 78243

Lawrence Livermore National Labs, Livermore, CA 94550

167

This paper describes a prototype Distributed Intrusion Detection System (DIDS) which generalizes the tar-
get environment in order to monitor multiple hosts connected via a network as well as the network itself. The
DIDS components include the DIDS director, a single host monitor per host, and a single LAN monitor for each
LAN scgment of the monitored network. The information gathered by these distributed components is tran-
sported 10, and analyzed at, a central location (viz. an expert system, which is a sub-component of the director),
thus providing the capability to aggregate information from different sources. We can cope with any audit trail
format as long as the events of interest are provided.

DIDS is designed to operate in a heterogencous environment composed of C2 [1] or higher rated comput-
ers. The current target environment consists of several hosts connected by a broadcast LAN segment (presently
an Ethemet, see Fig. 1). The use of C2-rated systems implies a consistency in the content of the system audit
trails. This allows us to develop standard representations into which we can map audit data from UNIX, VMS,
or any other system with C2 auditing capabilities. The C2 rating also guarantees, as part of the Trusted Com-
puting Base (TCB), the security and integrity of the host’s audit records. Although the hosts must comply with
the C2 specifications in order 10 be monitored directly, the network related activity of non-compliant hosts can
be monitored via the LAN monitor. "Since all attacks that utilize the network for system access will pass
through the LAN segment, the LAN monitor will be able to monitor all of this traffic.

Section 2 motivates our work by describing the type of behavior which DIDS is intended to detect. In
Section 3 we present an overview of the DIDS architecture. In Section 4 we formulate the concept of the
network-user identification (NID), an identifier for a network-wide user, and describe its use in distributed intru-
sion detection. Sections 5 and 6 deal with the host and LAN monitors, respectively, while Section 7 discusses
the expert system and its processing mechanisms based on the NID. Section 8 provides some concluding
remarks.

2. Scenarios

The detection of certain attacks against a networked system of computers requires information from multi-
ple sources. A simple example of such an attack is the so-called doorknob attack. In a doorknob attack the
intruder’s goal is to discover, and gain access to, insufficiently-protected hosts on a system. The intruder gen-
erally tries a few common account and password combinations on each of a number of computers. These sim-
ple attacks can be remarkably successful [4]. As a case in point, UC Davis’ NSM recently observed an attacker
of this type gaining super-user access to an external computer which did not require a password for the super-
user account. In this case, the intruder used felnet to make the connection from a university computer system,
and then repeatedly tried to gain access to several different computers at the external site. In cases like these,
the intruder tries only a few logins on each machine (usually with different account names), which means that
an IDS on each host may not flag the attack. Even if the behavior is recognized as an attack on the individual
host, current IDS’s are generally unable to correlate reports from multiple hosts; thus they cannot recognize the
doorknob atiack as such. Because DIDS aggregates and correlates data from multiple hosts and the network, it
is in a position to recognize the doorknob attack by detecting the pattern of repeated failed logins even though
there may be 100 few on a single host to alert that host’s monitor.

In another incident, our NSM recently observed an intruder gaining access to a computer using a guest
account which did not require a password. Once the attacker had access to the system, he exhibited behavior
which would have alerted most existing IDS’s (e.g., changing passwords and failed events). In an incident such
as this, DIDS would not only report the attack, but may also be able to identify the source of the attack. That
is, while most IDS’s would report the occurrence of an incident involving user "guest” on the target machine,
DIDS would also report that user "guest” was really, for example, user "smith” on the source machine, assuming
that the source machine was in the monitored domain. It may also be possible to go even further back and iden-
tify all of the different user accounts in the "chain” to find the initial launching point of the attack.

Another possible scenario is what we call network browsing. This occurs when a (network) user is look-
ing through a number of files on several different computers within a short period of time. The browsing
activity level on any single host may not be sufficiently high enough to raise any alarm by itsclf. However, the
network-wide, aggregated browsing activity level may be high enough to raise suspicion on this user. Network
browsing can be detecied as follows. Each host monitor will report that a particular user is browsing on that
system, even if the comresponding degree of browsing is small. The expert system can then aggregate such
formation from multiple hosts to determine that all of the browsing activily corresponds to the same network

168

user. This scenario presents a key challenge for DIDS: the tradeoff between sending all audit records to the
director versus missing attacks because thresholds on each host are not exceeded.

In addition to the specific scenarios outlined above, there are a number of general ways that an intruder
can usc the connectivity of the network to hide his trail and to enhance his effectiveness. Some of the attack
configurations which have been hypothesized include chain and paralle! attacks [2]. DIDS combats these
inherent vulnerabilities of the network by using the very same connectivity to help track and detect the intruder.
Note that DIDS should be at least as effective as host-based IDS's (if we implement all of their functionality in
the DIDS host monitor), and at keast as effective as the stand-alone NSM.

3. DIDS Architecture

The DIDS architecture combines distributed monitoring and data reduction with centralized data analysis.
This approach is unique among current IDS's. The components of DIDS are the DIDS director, a single host
monitor per host. and a single LAN monitor for each broadcast LAN segment in the monitored network. DIDS

. can potentially handle hosts without monitors since the LAN monitor can report on the network activities of
such hosts. The host and LAN monitors are primarily responsible for the collection of evidence of unauthorized
or suspicious activity, while the DIDS director is primarily responsible for its evaluation. Reports are sent
independently and asynchronously from the host and LAN monitors to the DIDS director through a communica-
tions infrastructure (Fig. 2). High level communication protocols between the components are based on the ISO
Common Management Information Protocol (CMIP) recommendations, allowing for future inclusion of CMIP
management tools as they become useful. The architecture also provides for bidirectional communication
between the DIDS director and any monitor in the configuration. This communication cousists primarily of not-
able cvents and anomaly repocts from the monitors. The director can also make requests for more detailed
information from the distributed monitors via a "GET™ directive, and issue commands to have the distributed
monitors modify their monitoring capabilities via a "SET™ directive. A large amount of low level filtering and
some analysis is performed by the host monitor to minimize the use of network bandwidth in passing evidence
to the director.

The host monitor consists of & host event generator (HEG) and a host agent. The HEG collects and
analyzes audit records from the host’s operating system. The audit records are scanned for notable events,
which are transactions that are of interest independent of any other records. These include, among others, failed
cvents, user authentications, changes to the security state of the system, and any network access such as rlogin
and rsh. These notable events are then sent to the director for further analysis. In enhancements under develop-
ment, the HEG will also track user sessions and report anomalous behavior aggregated over time through
user/group profiles and the integration of Haystack [10] into DIDS. The host agent handles all communications
between the host monitor and the DIDS director.,

Like the host monitor, the LAN monitor consists of a LAN event generator (LEG) and a LAN agent. The
LEG is curreatly a subset of UC Davis’ NSM [3]. Its main responsibility is to observe all of the traffic on its
segment of the LAN to monitor host-to-host connections, services used, and volume of traffic. The LAN moni-
tor reports on such network activity as rlogin and telnet connections, the use of security-related services, and
changes in network traffic patterns. ’

The DIDS director consists of three major components that are all located on the same dedicated worksta-
tion. Because the components are logically independent processes, they could be distributed as well. The com-
munications manager is responsible for the transfer of data between the director and each of the host and the
LAN monitors. It accepts the notable event records from each of the host and LAN monitors and sends them to
the expert system. On behalf of the expert system or user interface, it is also able to send requests to the host
and LAN monitors for more information regarding a particular subject. The expert system is responsible for
evaluating and reporting on the security state of the monitored system. It receives the reports from the host and
the LAN monitors, and, based on these reports, it makes inferences about the security of each individual host, as
well as the system as a whole. The expert system is a rule-based system with simple learning capabilities. The
director’s user interface allows the System Security Officer (SSO) interactive access to the entire system. The
SSO is able o watch activities on each host, watch network traffic (by setting "wire-taps”), and request more
specific types of information from the monitors.

We anticipate that a growing set of tools, including incident-handling tools and network-management
wols, will be used in conjunction with the intrusion-detection functions of DIDS. This will give the SSO the

169

ability to actively respond to attacks against the system in real-time. Incident-handling tools may consist of pos-
sible courses of action to take against an attacker, such as cutting off network access, a directed investigation of
a particular user, removal of system access, etc. Network-management tools that are able to perform network
mapping would also be useful.

4, The Network-user Identification (NID)

One of the more interesting challenges for intrusion detection in a networked environment is to track users
and objects (e.g., files) as they move across the network. For example, an intruder may use several different
accounts on different machines during the course of an attack. Correlating data from several independent
sources, including the network itself, can aid in recognizing this type of behavior and tracking an intruder to
their source. In a networked environment, an intruder may often choose to employ the interconnectivity of the
computers to hide his true identity and location. It may be that a single intruder uses multiple accounts to
launch an attack, and that the behavior can be recognized as suspicious only if one knows that all of the activity
emanates from a single source. For example, it is not particularly noteworthy if a user inquires about who is
using a particular computer (e.g., using the UNIX who or finger command). However, it may be indicative of
an attack if a user inquires about who is using each of the computers on 2 LAN and then subsequently logs into
one of the hosts. Detecting this type of behavior requires attributing multiple sessions, perhaps with different
account names, o a single source.

This problem is unique to the network environment and has not been dealt with before in this context.
QOur solution to the multiple user identity problem is to create a network-user identification (NID) the first time a
uscr enters the monitored environment, and then to apply that NID to any further instances of the user. All evi-
dence about the behavior of any instance of the user is then accountable to the single NID. In particular, we
must be able to determine that "smith@hostl” is the same user as "jones@host2”, if in fact they are. Since the
network-user identification problem involves the collection and evaluation of data from both the host and LAN
monitors, examining it is a useful method to understand the operation of DIDS. In the following subsections we
examine each of the components of DIDS in the context of the creation and use of the NID.

5. The Host Monitor

The host monitor is currently installed on Sun SPARCstations running SunOS 4.0.x with the Sun C2 secu-
rity package [9]. Through the C2 security package, the operating system produces audit records for virtually
every transaction on the system. These transactions include file accesses, system calls, process executions, and
logins. The contents of the Sun C2 audit record are: record type, record event, time, real user ID, audit user ID,
effective user ID, real group ID, process ID, error code, return value, and label.

The host monitor (Fig. 3) examines each audit record to determine if it should be forwarded to the expert
system for further evaluation. Centain critical audit records are always passed directly to the expert system (i.e.,
notable events); others are processed locally by the host monitor (ie., profiles and attack signatures, which are
sequences of noteworthy events which indicate the symptoms of attacks) and only summary reports are sent to
the expert system, Thus, one of the design objectives is to push as much of the processing operations down to
the low-level monitors as possible. In order to do this, the HEG creates a more abstract object called an event.
The event includes any significant data provided by the original audit record plus two new fields: the action and
the domain. The action and domain are abstractions which are used to minimize operating system dependencies
at higher levels. Actions characterize the dynamic aspect of the audit records. Domains characterize the objects
of the audit records. In most cases, the objects are files or devices and their domain is determined by the
characteristics of the object or its Jocation in the file system. Since processes can also be objects of an audit
record, they are also assigned to domains, in this case by their function.

The actions are: session_start, session_end, read (a file or device), write (a file or device), execute (a pro-
cess), terminate (a process), create (a file or (virmal) device), delete (a file or (virtval) device), move (rename a
file or device), change rights, and change user id. The domains are: tagged, authentication, audit, network, sys-
tem, sys_info, user_info, utility, owned, and not_owned.

The domains are prioritized so that an object is assigned to the first applicable domain. Tagged objects
are ones which arc thought a priori to be particularly interesting in terms of detecting intrusions. Any file, dev-

ice, or process can be tagged (e.g., fetc/passwd). Awthentication objects are the processes and files which are
used to provide access control on the system (e.g., the password file). Similarly, audir objects relate to the

170

accounting and sccurity auditing processes and files. Nerwork objects are the processes and files not covered in
the previous domains which relate to tlic use of the network. System objects are primarily those which are con-
cemed with the execution of the operating system itself, again exclusive of those objects alrcady assigned to pre-
viously considered domains. Sys_info and user_info objects provide information about the system and about the
users of the system, respectively. The wiliry objects are the bulk of the programs run by the users (e.g., com-
pilers and editors). In general, the execution of an object in the utility domain is not. interesting (except when
the usc is excessive), but the creation or modification of one is. Owned objects are relative to the user.
Not_owned objects are, by exclusion, every object not assigned to a previous domain. They are also relative to
a user; thus, files in the owned domain relative to "smith” are in the not_owned domain relative to "jones".

All possible transactions fall into one of a finite number of events formed by the cross product of the
actions and the domains, and each event may also succeed or fall. Note that no distinction is made between
files, directories or devices, and that all of these are treated simply as objects. Not every action is applicable to
every object; for example, the terminate action is applicable only to processes. The choice of these domains and
actions is somewhat arbitrary in that one could easily suggest both finer and coarser grained partitions. How-
ever, they capture most of the interesting behavior for intrusion detection and correspond reasonably well with
what other researchers in this field have found to be of interest {5, 10]. By mapping an infinite number of tran-
sactions to a finite number of events, we not only remove operating system dependencies, but also restrict the
number of permutations that the expert system will have to deal with. The concept of the domain is one of the
keys to detecting abuses. Using the domain allows us to make assertions about the nature of a user’s behavior
in a straightforward and systematic way. Although we lose some details provided by the raw audit information,
that is more than made up for by the increase in portability, speed, simplicity, and generality.

An event reported by a host monitor is called a host audit record (har). The record syntax is:
har(Monitor-ID, Host-ID, Audit-UID, Real-UID, Effective-UID, Time, Domain, Action, Transaction, Object,
Parent Process, PID, Return Value, Error Code).

Of all the possible events, only a subset are forwarded to the expert system. For the creation and applica-
tion of the NID, it is the events which relate to the creation of user sessions or to a change in an account that
arc important. These include all the events with session_start -actions, as well as ones with an execute action
applied to the network domain. These latter events capture such transactions as executing the rlogin, telnet, rsh,
and rexec UNIX programs. The HEG consults external tables, which are built by hand, to determine which
events should be forwarded to the expert system. Because they relate to events rather than to the audit records
themselves, the tables and the modules of the HEG which use them are portable across operating systems. The
only portion of the HEG which is operating system dependent is the module which creates the events.

6. The LAN Monitor

The LAN monitor is currently a subset of UC Davis’ Network Security Monitor [3]. The LAN monitor
builds its own "LAN audit trail". The LAN monitor observes each and every packet on its segment of the LAN
and, from these packets, it is able to construct higher-level objects such as connections (logical circuits), and ser-
vice requests using the TCP/IP or UDP/IP protocols. In particular, it audits host-to-host connections, services
used, and volume of traffic per connection.

Similar to the host monitor, the LAN monitor uses several simple analysis techniques to identify
significant events. The events include the use of certain services (e.g., rlogin and telnet) as well as activity by
certain classes of hosts (e.g., a PC without a host monitor). The LAN monitor also uses and maintains profiles
of expected network behavior. The profiles consist of expected data paths (e.g., which systems are expected to
establish communication paths to which other systems, and by which service) and service profiles (e.g., what a
typical telnet, mail, or finger is expected to look like).

The LAN monitor also uses heuristics in an attempt to identify the likelihood that a particular connection
represents intrusive behavior. These heuristics consider the capabilities of each of the network services, the
level of authentication required for each of the services, the security level for each machine on the network, and
signatures of past attacks. The abnormality of a connection is based on the probability of that particular connec-
tion occurring and the behavior of the connection itself. Upon request, the LAN monitor is also able to provide
a more detailed examination of any connection, including capturing every character crossing the network (ie., a
wire-tap). This capability can be used to support a directed investigation of a particular subject or object. Like
the host monitor, the LAN monitor forwards relevant security information to the director through its LAN agent.

171

An event reporicd by a LAN monitor 1s called a network audit record (nar). The record syntax is:
nar(Monitor-ID, Source Host, Dest Host, Time, Service, Domain, Status).

The LAN monitor has several responsibilities with respect to the creation and use of the NID. The LAN
monitor is responsible for detecting any connections related to rlogin and telnet sessions. Once these connec-
tions are detected, the LAN monitor can be used to verify the owner of a connection. The LAN monitor can
also be used to help track tagged objects moving across the network. The SSO can also ask for a wire-tap on a
certain network connection to monitor a particular user’s behavior.

7. The Expert System

DIDS utilizes a rule-based (or production) expert system. The expert system is cumently written in Pro-
log, and much of the form of the rule base comes from Prolog and the logic notation that Prolog implies. The
expert system uses rules derived from the hierarchical Intrusion Detection Model (IDM). The IDM describes the
data abstractions used in inferring an attack on a network of computers. That is, it describes the transformation
from the distributed raw audit data to high level hypotheses about intrusions and about the overall security of
the monitored environment. In abstracting and correlating data from the distributed sources, the model builds a
virtual machine which consists of all the connected hosts as well as the network itself. This unified view of the
distributed system simplifies the recognition of intrusive behavior which spans individual hosts. The model is
also applicable to the trivial network of a single computer.

The model is the basis of the rule base. It serves both as a description of the function of the rule base,
and as a touchstone for the actual development of the rules. The IDM consists of 6 layers, each layer represent-
ing the result of a transformation performed on the data (see Table 1).

The objects at the first level of the model are the audit records provided by the host operating system, by
the LAN monitor, or by a third party auditing package. The objects at this level are both syntactically and
semantically dependent on the source. At this level, all of the activity on the host or LAN is represented.

At the second level, the event (which has already been discussed in the context of the host and LAN mon-
itor) is both syntactically and semantically independent of the source standard format for events.

The third layer of the IDM creates a subject. This introduces a single identification for a user across
many hosts on the network. It is the subject who is identified by the NID (see section 7.1). Upper layers of the
model treat the network-user as a single entity, essentially ignoring the local identification on each host. Simi-
larly, above this level, the collection of hosts on the LAN are generally treated as a single distributed system
with little attention being paid to the individual hosts.

The fourth layer of the model introduces the event in context. There are two kinds of context: temporal
and spatial. As an example of temporal context, behavior which is unremarkable during standard working hours
may be highly suspicious during off hours [5]. The IDM, therefore, allows for the application of information
about wall-clock time to the events it is considering. Wall-clock time refers to information about the time of
day, weekdays versus weckends and holidays, as well as periods when an increase in activity is expected. In
addition to the consideration of external temporal context, the expert system uses time windows to correlate
events oocurring in temporal proximity. This notion of temporal proximity implements the heuristic that a call
to the UNIX who command followed closely by a login or logout is more likely to be related to an intrusion
than either of those events occurring alone, Spatial context implies the relative importance of the source of
events. That is, events related to a particular user, or events from a particular host, may be more likely to
represent an intrusion than similar events from a different source. For instance, a user moving from a low-
security machine to a high-security machine may be of greater concemn than a user moving in the opposite direc-
tion. The model also allows for the correlation of multiple events from the same user or source. In both of
these cases, multiple events are more noteworthy when they have a common element than when they do not.

The fifth layer of the model considers the threats to the network and the hosts connected to it. Events in
context are combined Lo create threats. The threats are partitioned by the nature of the abuse and the nature of
the target. In other words, what is the intruder doing, and what is he doing it to? Abuses are divided into
attacks, misuses, and suspicious acts. Atlacks represent abuses in which the state of the machine is changed.
That is, the file system or process state is different after the attack than it was prior to the attack. Misuses
represent out-of-policy behavior in which the state of the machine is not affected. Suspicious acts are cvents
which, while not a violation of policy, are of interest to an IDS. For example, commands which provide .

172

information about the state of the system may be suspicious. The targets of abuse are characterized as being
cither system objects or user objects and as being either passive or active. User objects are owned by non-
privileged users and/or reside within a non-privileged user’s directory hierarchy. System objects are the comple-
ment of user objects. Passive objects are files, including executable binaries, while active objects are essentially
Tunning processes.

At the highest level, the model produces a numeric value between onc and -100 which represents the
overall security state of the network. The higher the number the less secure the network. This value is a func-
tion of all the threats for all the subjects on the system. Here again we treat the collection of hosts as a single
distributed system. Although representing the security level of the system as a single value seems to imply
some loss of information, it provides a quick reference point for the SSO. In fact, in the current implementa-
tion, no information is lost since the expert system maintains all the evidence used in calculating the security
state in its intermnal database, and the SSO has access to that database.

In the context of the network-user identification problem we are concerned primarily with the lowest three
levels of the model: the audit data, the eveat, and the subject. The genecration of the first two of these have
already been discussed; thus, the creation of the subject is the focus of the following subsection.

The expert system is responsible for applying the rules to the evidence provided by the monitors. In gen-
eral, the rules do not change during the execution of the expert system. What does change is a numerical value
associated with each rule. This Rule Value (RY) represents our confidence that the rule is useful in detecting
intrusions. These rule values are manipulated using a negative reinforcement training method which allows the
expert system to continually lower the number of false attack reports. When a potential attack is reported by the
expert system, the SSO determines the validity of the report and gives feedback to the expert system. If the
report was deemed faulty, then the expert system lowers the RV's associated with the rules that were used to
draw that conclusion. In addition to this directed training, which may lower some rule values, the system also
automatically increases the RV's of all the rules on a regular basis. This recovery algorithm allows the system
to adapt to changes in the environment as well as recover from faulty training. ‘

Logically the rules have the form:
antecedent => conscquence

where the antecedent is either a fact reported by one of the distributed monitors, or a consequence of some pre-
viously satisfied rule. The antecedent may also be a conjunction of these. The overall structure of the rule base
is a tree rooled at the top, Thus, many facts at the bottom of the tree will lead to a few conclusions at the top of
the tree.

The expert system shell consists of approximately a hundred lines of Prolog source code. The shell is
responsible for reading new facts reported by the distributed monitors, attempting to apply the rules to the facts
and hypotheses in the Prolog database, reporting suspected intrusions, and maintaining the various dynamic
values associated with the rules and hypotheses. The syntax for rules is:

rule(n - (single,[A 1).(C))).

where n is the rule number, r is the initial RV, A is the single antecedent, and C is the consequence. Conjunc-
tive rules have the form:

rule(n r (and,[A 1,4 2,4 3D(CH)).

where A1,A;,44 are the antecedents and C is the consequence. Disjunctive rules are not allowed; that situation
1s dealt with by having multiple rules with the same consequence.

7.1. Building the NID

With respect to Unix, the only legitimate ways to create an instance of a user are for the user to login
from a terminal, console, or off-LAN source, to change the user-id in an existing instance, or to create additonal
instances (local or remote) from an existing instance. In each case, there is only one initial login (system wide)
from an external device. When this original login is detected, a new unique NID is created. This NID is
applied to every subsequent action generated by that user. When a user with a NID creates a new login session,
that new session is associated with his original NID. Thus the system maintains a single identification for each
physical user.

We consider an instance of a user to be the 4-tuple <session_start, user-id, host-id, time>. Thus each
login creates a new instance of a user. In associating a NID with an instance of a user, the expert system first
trics to use an existing NID. If no NID can be found which applies to the instance, a new one is created. Try-
ing to find an applicable existing NID consists of several steps. If a user changes identity (e.g., using UNIX's su
command) on a host, the new instance is assigned the same NID as the previous identity. If a user performs a
remote fogin from one host to another host, the new instance gets the same NID as the source instance. When
no applicable NID is found, a new unique NID is created by the following rule:

rule(111,1000,(
hhar(_,Hostl,AUH),_,_,Timcl,_,session_start._,_,’local’,_,_,_), /* login */
\+ (ih(net_user(NID,AUID,Host,),_, ,)), /* no NID yet */
newNID(X) /* create new NID */

1
(net_user(X,AUID,Host1,Timel))). /* new net user */

The actual association of a NID with a user instance is through the hypothesis net_user. A new hypothesis is
created for cvery event reported by the distributed monitors. This new hypothesis, called a subject, is formed by
the rule:

rule(110,100,(and,{
har(Mon,Host,AUID,UID,EUID, Time,Dom,Act, Trans,Obj,Parent,PID Ret Err).
net_user(NID,AUID, Host,)

)R
subj(NID,Mon,Host, AUID,UID,EUID, Time,Dom,Act, Trans,Obj,Parent PID ,Ret Err))).

The rule creates a subject, getting the NID from the net_user and the remaining fields from the host audit
record, if and only if both the user-id and the host-id match. It is through the use of the subject that the expert
system correlates a user’s actions regardless of the login name or host-id.

There is still some uncertainty involved with the network-user identification problem. If a user leaves the
monitored domain and then comes back in with a different user-id, it is not possible to connect the two
instances. Similarly, if a user passes through an unmonitored host, there is still uncertainty that any connection
leaving the host is attributable to any connection entering the host. Multiple connections originating from the
same host at approximately the same time also allow uncertainty if the user names do not provide any helpful
information. The expert system:can make a final decision with additional information from the host and LAN
monitors that can (with high probability) disambiguate the connections.

8. Conclusion

Our Distributed Intrusion Detection System (DIDS) is being developed to address the shortcomings of
current single host IDS’s by generalizing the target environment to multiple hosts connected via a network
(LAN). Most current IDS’s do not consider the impact of the LAN structure when attempting (o monitor user
behavior for attacks against the system. Intrusion detection systems designed for a network environment will
become increasingly important as the number and size of LAN’s increase. Our prototype has demonstrated the
viability of our distributed architecture in solving the network-user identification problem. We have tested the
system on a sub-network of Sun SPARCstations and it has correctly identified network users in a variety of
scenarios. Work continues on the design, development, and refinement of rules, particularly those which can take
advantage of knowledge about particular kinds of attacks. The initial prototype expert system has been written
in Prolog, but it is currently being ported to CLIPS due to the latter’s superior performance characteristics and
easy intcgration with the C programming language. We are designing a signature analysis component for the
host monitor to detect events and sequences of events that are known to be indicative of an attack, based on a
specific context. In addition to the current host monitor, which is designed to detect attacks on general purpose
multi-user computers, we intend to develop monitors for application specific hosts such as file servers and gate-
ways. In support of the ongoing development of DIDS we are planning to extend our model to a hierarchical
Wide Area Network environment.

Acknowledgments

The DIDS project is sponsored by the United States Air Force Cryptologic Support Center through a con-

tract with the Lawrence Livermore National Labs.

References

1.

10.

11.

12

Department of Defense, Trusted Computer System Evaluation Criteria, National Computer Security Center,
DOD 5200.28-STD, Dec. 1985.

G.V. Dias, KN. Levitt, and B. Mukherjee, ““Modeling Attacks on Computer Systems: Evaluating Vulnera-
bilitics and Forming a Basis for Attack Detection,”” Technical Report CSE-90-41, University of California,
Davis, Jul. 1990.

L.T. Heberlein, G. Dias, K. Levitt, B. Mukhegee, J. Wood, and D. Wolber, *‘A Network Security Moni-
tor,”* Proc. 1990 Symposium on Research in Security and Privacy, pp. 296-304, Oakland, CA, May 1990.
B. Landreth, Qut of the Inner Circle, A Hacker's Guide to Compuer Security, Microsoft Press, Bellevue,
WA, 1985.

T. Lunt, “*Automated Audit Trail Analysis and Intrusion Detection: A Survey,”’ Proc. 11th National Com-
puter Security Conference, pp. 65-73, Baltimore, MD, Oct. 1988.

TF. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G. Neumann, and C, Jalali, ““IDES: A Progress
Report,”” Proc. Sixth Annual Computer Security Applications Conference, Tucson, AZ, Dec. 1990.

T.E. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H.S. Javitz, A. Valdes, and P.G. Neumann,
““A Real-Time Intrusion-Detection Expert Systemn (IDES),”” Interim Progress Report, Project 6784, SRI
International, May 1990.

M.M. Sebring, E. Shellhouse, M.E. Hanna, and R.A. Whitchurst, “‘Expert Systems in Intrusion Detection:
A Case Study,”" Proc. 11th National Computer Security Conference, pp. 74-81, Oct. 1988.

W.0. Sibert, ‘“‘Auditing in a Distributed System: SunOS MLS Audit Trails,” Proc. 11th National Com-
puter Security Conference, Baltimore, MD, Oct. 1988.

S.E. Smaha, ‘‘Haystack: An Intrusion Detection System,’’ Proc. IEEE Fourth Aerospace Computer Secu-
rity Applications Conference, Orlando, FL, Dec. 1988.

H.S. Vaccaro and G.E. Liepins, ‘‘Detection of Anomalous Computer Session Activity,”” Proc. 1989 Sym-
posium on Research in Security and Privacy, pp. 280-289, Oakland, CA, May 1989. ’

JR. Winkler, *‘A Unix Prototype for Intrusion and Anomaly Detection in Secure Networks,”” Proc. 13th
National Computer Security Conference, pp. 115-124, Washington, D.C., Oct. 1990.

Level | Name Explanation

6 Security State overall network security level

5 Threat definition of categories of abuse

4 Context event placed in context

3 Subject definition and disambiguation of network user

2 Event OS independent representation of user action
(finite number of these)

1 Data audit or OS provided data

Table 1. Intrusion Detection Model

175

(Monitor] ™ o W
I LAN Monitor
| m-
Gateway E

DIDS
Director —D
T !
ﬁ ‘——l~| (Unmonitored Host)

\ e

Fig. 1. DIDS Target Environment

DIDS Director

Security
Expert User —--- | Officer

System Interface

—data path
—---- control

Y
LAN Agent
Host Event Generator LAN Event Generator
T LAN Monitor
Host Monitor(s)

Flg. 2. Communications Architecture

Host Agent
§ Notable
3 |Profiles Events Signatures | +
: Event Filter :

Fig. 3. Host Menitor Structure

176

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY,”
o : Narionar CompuTter SEcURITY CENTER

14TH NaTionaL COMPUTER

SECURITY CONFERENCE

October 1-4, 1991
g Omni Shoreham Hotel
Washington, D.C.

oA

