ANALYSIS OF AN ALGORITIIM FOR DISTRIBUTED RECOGNITION
AND ACCOUNTABILITY

Calvin Ko

.. Todd Heberlen Iar] Levitt,

Deborabh AL Frincke

Biswanath Mukherjec

Terrence Goan, Jr.

Chnistopher Wee

Departiment of Computer Science
University of California, Davis
Davis, CA 95610

Abstract

Compnter and network systems are vulnerable to at-
tacks.  Abandoning the existing huge infrastructure of
possibly-tnsecure coniputer and netwaork systemns is impossi-
Lle, and replacing them by totally sccure systems may not be
feasible or cost effective. A common element in many attacks
is that a single user will often attempt to intrude upon mul-
tiple vesources throughout a network. Detecting the attack
can become significantly easier by compiling and integrat-
ing evidence of such indrusion attempts across the network
rather than attempting to assess the sitnation from the van-
tage point of only a single host. To solve this problem, we
suggest an approach for distributed recognition and account-
ability (DRA), which consists of algorithms which “process”,
at a central location, distributed and asynchronous “reports”™
generated by compuwiers {or a subsel thercol) throughout
the network. Our highest-priority objectives are 1o observe
ways by which an individual moves around in a network of
computers, including changing user names to possibly hide
hisfher true identity, and to associate all activities of mul-
tiple instances of the same individual to the same network-
wide user. We present the DRA algorithm and a sketch of
its proof under an initial set of simplifylug albeit realistic as-
sumptions. Laler, we relax these assumptions to accommo-
date pragmatic aspects such as missing or defayed “reports”,
clock skew, tampered “reports”, etc. We believe thal such
algorithms will have widespread applications in the future,

particularly in intrusion-deteclion systems.

1 Introduction

Mast computer systems have some kind of sccurity flaw
that may allow outsiders (or legitimate users) to gain
unauthorized access to sensitive information. In most
cases, 1L 1s nol practical Lo replace such a flawed system
with a new, more sceure system. It is also very difficult,
if not impossible, to develop a complelely-secure system.
Even a sccure system is vulnerable to insiders misusing
thelr privileges, or improper operating practices. While
many existing systemns may be designed to prevent spe-
cific types of attacks, other methods to gain unautho-
rized acecess may still be possible. Due to the tremen-
dous investment, already made 1:to the existing infras-
tructure of “open” {(and possibly insecure) communica-
tion networks, 10 s infeasible to deploy new, secure, and
possibly “closed” networks. Since the event of an altack
should be considered evitable, there is a tremendous
need for mechanisms that can detecl cutsiders attempt-
ing to gain entry into a system, that can detect insiders
misusing their system privileges, and that can monitor
the networks connectling all of these systems together.

A common clement in many attacks (or computer
mtrusions) is that a single user will often atternpt to
mtrude upon multiple resources throughout a network.
Detecting the attack can become significantly easier by
compiling and inlegrating evidence of such intrusion at-
tempis across the network rather than attempting to
assess the situation from the vantage point of only a
single host. For example, an attacker may make only
a single attempt at guessing a password for each host
computer. Thus, from the vantage point of a host, the
break-in attempts may appear to be a very norimal mis-
take. However, by integrating these observations over
multiple target hosts, 1t hecames clear that a single at-
tacker is making a concerted altempt 1o break n some-
where, by looking for an obivious hole.

Accordingly, the goals of our present work on dis-
tributed recognition and accountability (DRA) are (1)



to observe the ways by whieh an individual moves
around in a network of computers, ncluding chang-
ing user names to possibly hide his/her true identity
{distributed recognition); and {2} to associate all ac-
tivities of multiple instances of the same individoal to
the same network-wide user, referred to as the network
identificr, NI} (accountability). We assume thal mech-
anisms (communication facilitics) are available by which
“reporls” can bhe sent by computers distributed across
the network to a centralized location. ‘The centralized
facility, a CLIPS-based expert system in our current. imn-
plementation [SB*91a), executes the DRA algorithm 1o
track users as they move around the network, maintain-
ing correct. N1Ds as stated above.

Initially, the DRA algorithm is outlined under a set
of simplifying assumptions such as perfect network-wide
synchronization, no loss of information (e.g., no loss of
network packets associated with audit data), immediate
“report” gencration (i.c., all “reports” are in sequence),
the network connecting all host computers is an Ether-
net local area network (ILAN) so that all of their network
acltivities can be picked up by a LAN monitor such as
the Network Security Monitor (NSM) [IIML191], ele.
Later, some of the simplilying assumptions are relaxed,
and the corresponding necessary changes to the DRRA
algorithm are discussed. Proofs of correctness are oul-
lined to demonstrate that the DRA algorithm is robust
under the sinmplifying assumptions.

In Section 2, we provide motivation for our work by
describing several network atlacks that cannot easily be
detected with the association of DRA. In Seclion 3, we
briefly describe a system architecture that implements
a form of DRA ihal addresses some of the practical
comsiderations raised carlier. In Section 4, we discuss a
DRA algorithim under the simplifying assumption, and
in Section 5, we extend this DRA algorithm to encom-
pass practical considerations.

2 Network Attacks

Figure 1 shows scveral behavior styles that are charac-
teristic of an intruder. Some of these behavior styles
indicate an attempl to gain access to a system, while
others are intended to hide the intruder’s identity or
arc malicious behavior.

2.1 Doorknob Attack

In a doorknol attack, the intruder’s goal is to discover,
and gain access to, insufliciently protected hosts on a
system. The intruder generally tries common account
and password combinations on several compulters {sce

(a) Simple Aflack

{b) Doorknob Attack

=] -
// /]

{c) Chain Altack

e
—

(d) Loop Attack

I:I Current Source Current Tarpet Previous Larget
of activity

of activity uof activity

Ifigure I Network Attacks

Figure L, part. b). [If the intruder only tries a few lo-
gins on cach machie (with different account narmes),
single-liost Intrusion Detection Systemns {(1DS) having a
higher “threshold of detection” may not detect the at-
tack. The threshiold of detection 1s a common technique
used to quantify “how bad” a particular behavior is.
For example, two failed login attempts might be consid-
ered normal, but 30 failed login attempts should cause
concern. 1f the intruder trics two such “doorknob rat-
ties” on cach of 15 machines, then, without aggregation,
none of the 15 machines would consider such beliavior
to be senious. However, by aggregating all of the fogin
fartures, it becomes clear that an attack is underway.

For example, the following atlack has been ob-
served. An attacker galns super-user access (o an exter-
nal computer which did not require a password for the
super-uscr account. The intruder uses teclnet to make
the connection to this site, and then repeatedly tries to
pain access to several different computers at the external
site.

Another mtruder vses a doorknob attack and sue-
ceeds in gaining access to a computer using a “guest”
accound which does not require a password. Ounce the
attacker has access to the system, he exhibites behav-
ior which would alert most existing intrusion detection
systems (e.g., writing to sensitive files). The key here is
that DRA permits the intrusive activity to be associated
with ils original source, while most existing Intrusion
Detection Systems (IDSs) would account this activity
to the “guest” account and not provide any backtrack-

mg.



2.2 Chain and Loop Attacks

In o chain attack and a loop attack (Figure | parts ¢,
d), an intruder moves between several hosts and account
names i order 1o hide Lis point of origin. Insiders may
also cinploy cham attacks to camouflage their identity.
The key here is that the most recent reported login in
a chain attack would be from an on-site location rather
that, from outside.

3 Architectural Overview

Qur system is a prototype IDS designed to monitor user
behavior across a single Bihernet LAN. It provides a
lype of DRA similar to that deseribed above. Hosts
attached to the LAN may be cither uninonitored (such
as POs) or monitored. Al present, monitored hosts must
be either Unix systems with Sun Microsysteimn’s Basic
Security Moduole (BSM) or VMS systems. Boeth provide
a (2-level standard of auditing wformation.

Our architecture combimes distributed monttor-
ing and data reduction with centralized data analysis
[SBT91a][SB91b]. This approach is unigue among cur-
rent intrusion detection systemns. Each monitored host
is provided with a Host Monitor that collects and an-
alyzes audit records locally, These monitors pass in-
formation about nolable events to a central analyzer,
called the Director, for further processing.  Notable
eveats include: failed logins, changes to the sceurity
state of the system, tagged file accesses, unusually
high number of file accesses (browsing), and an un-
usually high volume of requests for information about
users (paranoia). Much of this information comes from
HAYSTACK [Smas§], which has been Incorporated into
Lthe Host Monitor.

The LAN is monitored hy a subset of the NSM
[NDL*90]. This LAN Monitor observes all trallic along
tlie network and reports activity such as rlogin and tel-
net connections, security-related services, and the use
of sensitive keywords (such as passwd) to the Director.

The Director consists of three logically indepen-
dent components that are all located on the same ded-
icated workstation: Comrnunications Manager, Expert
System, and User Interface. The Communications Man-
ager is respousible for the transfer of data between the
Director and each of the Host and LAN Monitors. The
Fxpert System 1s responsible for evaluating and report-
g on the security stale of the monitored system, It
receives the reports from the Host and the LAN Mon-
itors, and, based on these reports, it makes inferences
about the sceurity of cach individual host, as well as the
system as a whole. The Director’s User Interface allows

iy ude il outside. gov

vid: Je pitimate uid: guest
pid: 1033 pid-80192

NILx: 2 NI 2
3 wnd: finalname

pid: 801
uid: oeheruser
pd. 7M2

NID:1

uid. otheruser
pid- 21017

hosl: es.inside.edu hosi: es.chair.edu

uid: finainame
pid: 191919

host; £s.privaleedu

Figure 2: NI trace

the System Security Officer (850) interactive access to
the entire system.

4 Distributed Recognition and
Accountability

Section 2 described several forms of network traversals
that often indicate an intruder. Such attacks can be
detected by observing the way that an individual moves
arcund a network (distributed recognition). It is also
inportant to assign activily to the appropriate user (ac-
countability).

4.1 Iracking a User

On an Unix system, legal namncs or aliascs are created
for @ user only upon login (from a terminal, console,
or oll-LAN source}, upon change of user-1d, or upon
creation of additional aliases. In cach case, there is only
one initial fogin (network wide) from an external device
and a new unique nelwork identifier {NID) is created
when this original login is detected. When a user spawns
a new session, it is our goal to associate that new session
with the user’s original NID. Subsequent actions by that
user should then be accounted to this NI regardless of
the alias uscd.!

In Figure 2, a user (intruder@outside.gov) en-
ters the network from ‘outside’.  Activity associ-
ated with NID 1 includes actions from legitimate@cs
.inside.edu, guest@cs.private.edu and final

I'This method only works when user creates an alias by a
method which can be audited, e.g., telnet, rlogin, su, ftp. H a
user succeeds in finding a method that is not recorded, a backup
system (such as a LAN monitor) is needed,



d: legitimale wid: pucsi -
::d I(}yﬂ;mi pul:R0192 NI 5,2
] A

NID: 2 NID: 1,2 NP L2

wd: finalname
/ Ad: 801

md: Jepunaw Wed: olheruse
1Ad: 21017 d: 7012

uids guest]
Pt 191919

bost: cs.inshle.edu host: cs.chair.edu

host: ¢s.private.edu

Figure 3: Tracking an Attacker

name@cs.private.edu. If the users guest, finalname,
and legitimate are viewed separately, the activities as-
sociated with eacl of them may [all below the threshold
of deteetion and the users would appear Lo be benign.
1f the activity assoclated with a particular N1} is aggre-
gated, the total may exceed the threshold of detection
and it would beecome clear that a particular user is an
itruder.

When a user creates a new alias within a local host,
the local host can observe the process that initiales the
alias change, and store both the original aud the new
alins. However, when a user creates a remole alias using
rlogin, fip, cte., the local host can obscrve the original
alias and the request to create a new alias, but 1t cannot,
direetly observe the creation of the new alias (or the
process associaled with it). That information is m the
remote host’s audil trail,

From the perspective of the destination host, the
new alias (and the assoclated process) is known, How-
ever, the source user alias is nol necessarily present.
Even if this source name was attached to the request
to creale the new alias, the destination host could not
be certain that the information is accurate. It is, there-
{ore, neccssary to combine information from both hosts
in order to “connect” the activity on the source host
wilh the activity of the destination host. 'T'his is the
purpose of distributed recognition.

A slight variation of the situation depicted in Fig-
urc 3 highlights the limitation of current audit records.
There are two sessions on host ¢s.inside.edu assocl-
ated with user legitimate. One of them is entercd
from outside (intruder@outside.gov) and the other is
logged on from a terminal. Since andit records are re-
ported according to account name, we can do no better
than account the activily of user legitimate to N1
1 or NID 2. Additional information is needed, e.g.,

TTY, to resolve the activity to the originating session.
Of course, the IDS could identify as suspicions (but not
neeessarily guarantee an intrusion} the presence of two
sessions with identical account names originating from
different sources.

4.2 Assumptions of the DRA Algorithm

The algorithn presented here depends on the followings
assunplions:

(1} all hosts on the network are monitored, 1.e.,
they generate audit records, (2) all hosts on the net-
work are synchronized, (3) audit records created by a
host for delivery to the Director arrive in the order cre-
ated, (1) no audit records are lost or tampered with,
{5} an audit record 1dentifics, where relevant, a connec-
tion identifier (in ‘TCP/IP, the identifer is [source host
and port, destination host and port]), (6) if a given user
mitiates multiple jobs on a single host, all subscquent
activities of these jobs will be accounted as 1if the user
had a single job (this is a Ihnitation of corrent audit
data in that activity i1s identified according to the ac-
count that generated it), and (7) each momtored host
periodically sends to thie Iirector a clock tick which -
dicates that all inessages sent frem that host before the
clock tick have arrived.

The following are the message types assumed for
our systent. (‘These messages are generated by the hosts
and sent {0 the Director for processing.)

Connection start:
Connection accept:

CS{saddr, daddr, suid, ts)
Ch(saddr, daddr, ts)
S$S(saddr, daddr, duid, ts)
FL{sadd, daddr, ts)
CE{saddr, daddr, ts)
SS{saddr, daddr, duid, ts)
AR(host, uid, activity, ts)

Session start:
Fail login:
Connection end:
Session end:
Activity record:

For a CS, CA, SS, 'L, CE, or 55 message, saddr
and daddr are the source address and the destination
address of the connection, respectively. The contents
of these addresses depend on the transport layer used,
for example, in TCP/IP, the source address and the
destination address are [source host, source port] and
[destination host, destination port], respectively. The
field ts is the time slamp of the message. How these
messages are generated is described below.

1. Wlen a user logs in to a host host_A with uid wed_f
from an external device D_ad, host host_A witl send
out a §5 message,

SS(EXTERNAL, daddr, D_1, 1ime),



where daddris (host A, device_rd), to the Director.

. When hosi_A attempts to connectl to host_B, a CS

message,
CS(saddr, daddr, suid, {ame),

where saddr and daddr are the source address and
the destination address of the connection, is sent
from host_A. suid 1s the user 1d associated with the
scssion which attempis the connection. (This is the
first. step when a user tries to creal a remote ahias
from host_A to host_B)

When hest_B accepls the connection, a CA mes-
sage,
CA{saddr, daddr, time),

is sentl from host_B. 1T hosi_ B does not accept the
connection or the attempt does not reach host B,
then no message will be sent.

If the user successfully logs in, a new session is cre-
ated for him in hesi_B and a S5 message,
SH{saddr, daddr, durd, tone),

where duid is the user id associated with the ses-

sion, 1s sent from host_ B,

If the login attempt is unsuccessful, a FL message,
FL{saddr, daddr, time),
is sent by host_B.

. When a notable event (e.g., deletion of a system

file) occurs at host-A, it will send a AR message,
AR[host A, wid, actrsly, time),

wlere uid is the user id of the user responsible for
the activity.

. When a user termminates a session tn hosi_C with

rzd_C, the following activities many occur.

Case 1: If Lthe user started the session from an ex-
ternal device, a session end message SE,

SE(EXTERNAL, (host_C, dev_ad, wd.C),

where dev_id 1s the external device associated with
the session, is generated.

Case 2: If the user started the session from another
host, the following occur:

(1) the corresponding session is terminated, and
{2) the connection is terminated.

When 1) occurs, a session end message,
SE(saddr, daddr, wid_C),

will be sent.

When 2) oceurs, a conneclion end message,
CE(saddr, daddr)

will be sent.

Note that, sometimes, when a connection is created
and the user docs not start a session or if the connection
is closed (e.g., due Lo timeout or user exil), only a CE
message 1s senl when the connection closes, since there

was 1o session start.

4.3 Overview of the DRA Algorithm

We present an overview of the DRA algorithm and its
proof, a detatled description and proof of the algorithm
is presented in [KFIT43].

The DRA algorithm maintains a directed graph
G(V,E), a message working sel (MWS), and a connec-
tion working set (CWS) throughout the execution of the
system. The directed graph G(V,E) records the current
connection status of the systemm. The MWS stores all
the unresolved messages and CWS stores all the com-
pleted connections. The originating point of a login,
(c.g., an external host outside the menitored domain,
or an external device such as a terininal or a console) is
represented by a vertex v(sre.id), which is designated
as an external vertex. A collection of indistinguishable
sessions (all assoclated with the same host and the same
uid) is represented by a vertex vl{host,uid}. When
an external login oceurs, an external vertex is created
and an unique network identity (NID) is assigned to
il. A NID set will be assigned Lo cach vertex since
more than one originating point can create a remote
alias to sessions with the samed (hosi,vid}; hence au-
dit records of the activitics of these sessions cannot be
distinguishied. An edge e(vi, vj, src_addr, dst_addr), a
directed edge from vertex vi to vy, indicales that a user
of the secssion represented by vi creates a remote alias
to one of the secssions represented by vj. In addition,
the algorithm depends on the availiabilty of the time of
the most recently arrived message for each monitored
host. Therefore, the algorithm keeps a log of the the
most recently arrived message’s time stamp from each
monitored host.

Before we describe the algorithm’s detail, we first
describe a likely sequence of events. For simplicity, we
assume that the transport layer is TCP/IP. The source
address and destination address of a connection is an
ordered pair [Host, Pori].

s An exlernal login occurs at time tl {rom a device
E to host A creating a session with account wuidf;
the message SS(EXTERNAL,[A,E},widi,t1)is gen-
erated. The algorithm creates the external vertex v
and vertex vl, and associates nidl with these ver-
tices. (See Figure 4a.)

e From host A port pl at time {2 > t1, a connection
Is initiated Lo host B at port p2, producing the



(a}

{nidl}

(b)

nidl (nid1} {nidI}

Figure 4: Nonnal Scquence of Events

message CS(fA, P11 (B, P2 wid1,12); this message is
stored 1 the MWS awailing subsecquent messages.

o Now, a conneclion accept message arrives {rom host
B CA([A P1).[B,P2]13), where 13 > (2. The al-
gorithm generates the pair (5, CA) with appro-
priate arguments and store it in the CWS,

o How can a session be associated with this connec-
tion? The execeution of a session start on host 13 will
produce the message SS([A,PI][B,P2]wid2,1]),
where uid2 15 the account name of the new session
which start at 14 > 3. The graph G is updated to
include vertex v2 to reflect this new sesston. nidl
15 associated with the new vertex v2. {See Figure
4t}

o Activitiy AR(B, wid?, command, 15) generated by
wid? on host B right now occur, and will be asso-
ciated with nidl.

o Uid?2 on host B termunates his session, gener-
ates the message SE([A,P1],[B, 2] 4id2,16), caus
ing vertex ¥2 to be removed. The following con-
nection end message 1s subsequently generated:
CE(fA,PILB,P2]t7), which removes the (C'S, €' 4)
pair from the CWS.

o Iinally, uid]l on host A terminates his session, pro-
ducing the message SE(EXTERNAL,[A,E]uid/,
18), which removes vertices v1 and v fromn G.

A imore elaborate situation depicted in Figure 5

lustrates the case when a vertex may represent several
sessions 0 a host, all having the same uid. In this figure,
for example, a user associated with nidl and one asso-
aiated with nid2 both start sessions on host A with uid
1. Now, when a command is executed in host A caus-
ing an aclivily message associated wilh uid 1, we have
no way to determine which originating session (nidl or

nidl

nid?2? nid3
@ ® [ ]
@ Inidl,nidZ} {ni(ll,nidl,n' ]
. {nid1l,nid2, nid3,nid4}
{nidl,nid2}
nid 4 {nid1,nid2,nid3,nid4)
®

External vertex

O Session vertex @

Figure 5 DRA Connection Graph

nid2) execuled the command. Therefore, the N1D sct
assoclated with vertex »] contains the N11J set {nidl,
nid2}.

Other lactors that complicate the algorithm follow:

s Although messages from a host arrive at the Dirce-
tor i the order generated, messages can be arbi-
trarvily delayed (possibly due to network failure or
caching of message in a host). Thus, for example,
a CA message nught arrive before 1ts correspond-
ing C8 message, and the pairing of these messages
must await the arrival of bolh messages. Further-
more, a session start followed by activities {audit
cvents) could arrive before the CS that started the
connection.

o A conncction n progress might not be completed,
i.e., a CS message might nol be followed by a corre-
sponding CA message. It 1s because the destination
host does not accept the connection or the connee-
tion request is lost due to some network problems.

+ A completed conneetion might not be followed by
a successful session start. This siluation happens
when the connection closes (e.g., due to timeout or
use exit) before the user successfully logs in.

Our algorithm reflects these possibilities.  DBefore
describing the algorithm, we indicate the properties
which the algorithin must satisfy.



(1) Correct association of Activity Records: H an ac-
tivity record AR 15 imtiated by a user u from an
originating session with nid nl, then nl will be in
the (NTD sel) associated to AR

(2) NI sets are minimal: All N Ds the algorithm as-
sociates with an activity record could have been
responsible for the activity.

The DRA algorithi proceeds as follows. [ consists
of thiree major steps:

Step 1: The Director updates its log at each hosts’s
tite upon receipt of a clock tick from the host.

Step 2: The Director attempls to pair up CA and C5
messages to idenlify a connection when the its time log
of a host H is updated. Select a relevant CA imessage,
A’ {source host ol the message is H) with the ear-
liest, time stamp. If the Lime stamp of C'A’' is earlier
than II's time, pair CA" with a CS with the same con-
nection identifier (source host, source port, destination
lost, destination port). If there is more than one CS
message, choose the C8 message that occurred most re-
cently belare C A’ Note that the pairing must await the
occurrence of this CS. When the pairing 1s complete,
carlier S messages with the smine connection identifics
as Lhe CA that did not lead to a connection accept can
be discarded from the MWS. Onee the completed con-
nection is recorded, there might be 55, AR, S mnessages
in the MWS that can be processed.

Step 3: Process any messages that arrive. This step
involves the following cases:

Casc 3.1 Arrival of SS(EXTERNAL, [host, devid], wid,
tone) message. This corresponds Lo a login from a
termminal or console. The external vertex o, corre-
sponding to the external device is created. If there
Is no verlex correspond to host and user uid, create
one and give it an unique NID. Otherwise, there is
such a vertex vl already; so create an edge belween
verlices v and vl and add the new NID to the NID
sed already associated with verlex vl,

Case 3.2 Arrival of a CS message, which is mserted
into the MWS,

tase 3.3 Arrival of o CA(fsre host, sre.port]) [dst_host,
dsi_port], wid, time) message. Attempt to find a
matching CS for this CA according to Step 2. If no
malch is found (the appropriate CS message is yet
to arrive), store CA 1wy the MWS.

Case 3.4 Arrival of a S5(fsre_kost,srcport], [dst_host,
dsi_port], wid, time) message. Atbtempt to iden-
tity a pair (C5,CA)Y that has the same connee-
tion identification (sre_liost, sre.port, dst_host,

dstoport) as the S50 I there is o vertex vl
(dst_host wrd) in Gy ocreate it and create an edge
from a vi(sre_hiosf, S wid) (S suid is the suid
field 1 the connection start message CS) which
must. he already in (35 associate with vl the NID
set of vi. If such a vertex vl already exists, creale
an edge for vertex vt to this vl and form the nnion
of the NID set of w7 and the NID set of v1. If no
(CS,CA) pair bas been forined, add the 88 message
1o the MWS.

Case 3.5 Arrival of a SE(EXTERNAL, [host dev_ad],
wed, time) wessage signalling the end of a session
initiated from an external device. The source ver-
tex v carresponding to the external device is re-
moved. Also remove the vertex vl if no other edge
is connected to it otherwise, update the NID set
assoclated with vertex vl to reflect the removal of
the NID associate with vertex v

Case 3.6 Arrivalola SE{/src_host sre_portf, [dest_host,
dest.port], wid, tume) message signalling the end of
a session not initiated from an external device. I
there is no vertex vl in G corresponding to dst_host
and uid, enter ST into the MWS, e |
tion has yet to be paired. Otherwise, if vertex vl
has only a single edge from another vertex vi, re-
move Lthe edge and vertex vl; otherwise, update the
NTI set of vertex vl to reflect the removal of the
NID associated with the ternninated session.

the connec-

Case 3.7 Arrival of a CE{fsrc_kost, sve_port], [dst_host,
dst_port], tomc} message signalling the termination
of a conncection. There must he a pair (C5,CA)
with thie same connection identifier as CIL; reinove

it from the CWS.

Case 3.8 Arrival of a ARfhest, wid, actrvily, fine)
message signalling an audited event, I there ex-
ists a vertex vl in G corresponding to host and
uid, associate AR with the NID set of wl. Other-
wise, insert A% into the MWS; the counection that
preceded this AR has yet 1o be recorded by the
Pirector.

4.4 Proof of the DRA Algorithm

The proof of the DRA algorithm proceeds in two steps.
In the first step, the “inajor” states associated with the
algorithm are enumerated, and it is proved that there
arc no other such states; the proof is by structural in-
duction: for cach state in the emuneration, it 1s verl-
fied that the arrival of a message of any type causes a
transition to one of these states. The states in the enu-
meration (slightly approximated) mclude the following.
They correspond to messages in the MWS with the same



coniection identifiers and arc yet ta be patred up by the
Director. ‘They are arranged in inereasing order of their
thne stamps.

(0} Empty
(1) A single CA message

(2) n (n=1,...} CA, CE essages followed by a CA
message (e.g., CA I CA,0E,CAzs)

(3) n(n=1,.) CS messages

(4) n (n=1,...} CS messages, m (m=0,1,.) CACE
messages followed by a CA message

(e.g., CS1CS,CA CR CACELC Ay)

As an example of the proof process, assume that the
current state is (). When a CA or CS message arrives,
ne pairing is possible, so that the transition s to state
(1) or (3). When the current state is (1), and a C5
message arrives (denote this case by 1), its time stamnp
must. be earlier than that of the CA associaled with
state (1) T is not kuown il this CS message led to the
CA essage or if it belongs to an aborted connection,
so there 1s uo pairing yet and the transition Lo state
(1) vceurs. Onee in state (4), another CS message, 57
might, arrive; if the time stamp of C'S7 exceeds that of
the fiest CS miessage, then the lirst CS message is paired
with the CA message aud both are removed frem the
MWS and the transition to state (2) occurs. If the time
stamp of 57 1s tess that that of CA, the system renmains
in state (1), While in state (1), a cleck hick with time
stamp ¢ night arrive fromn the source host (associated
with the connectiou), I L exceeds the time stamp of
CA, then the most recent, C8 is paived with CA and the
carlier (8’s are discarded. When the current state is
(1), and a CA message arrives, its time stamp st be
fater than that of the C8 associated with state (3). The
situation will be same as ().

Step 2 s the proof process involves showing that
the conjectured properties involving association of AR
records wilth NID sels are satisfied — 1n any state where
such an association is effected. This prool Is again by
induction, this time on the lenglh of paths in G.

Omnee it is established that the collection of system
states can be partitioned into the four classes above, 1t
can be proved that the C5 and CA messages arc cor-
rectly paired, and a subsequent S5 is associated with
this pair. Next, it is shown that the following major
properties are established:

(1) association of aclivily records with the external lo-
gins (N1D set), which must contain the NID of the
originating session whicli is responsible for the ac-
tivity, and

(2) the NID set contans only those external logins
which could hiave been responsible for the activity.

First consider property (1). The proof proceeds by
induction on the length of a path in G from the external
vertex v {external login) to the vertex vl associated with
the sessionis) that caused the generation of activity AR.

Base Case: An external login results in the creation
of a new vertex vl, and associates with vl the NID as-
signed Lo the source vertex; or, n the case of an existing
vertex vl with the host and utd of the external login,
thie external login results in the new NID beimng added
to the NID sel associated with 1. Tn either case, vertex
vl acquires the NIIY of ilic external Jogin and any AR
associaled with the new session is asociated with the
NID set of vertex vl.

Inductive Step: Assume that there exists a path
terminating with a vertex »1 and having an associated
NED sel that includes the NID associated with the ex-
ternal login at the beginning of the path. From verlex
vl,
nection (C8), having the remote host gencrate a CA
message and, finally, having the remote host gencrate
a S8 message. From the above analysis, the 55 is cor-
rectly associated with the {(CS,CA) pair. FEither a new

a new remote session is launched by starting a con-

vertex vi s generated to correspond to this new session,
and vi Inherits the NID set of #1, or an existing vertex
wj and its NI set extended to contain the NIID set of
vl. In either case, the activity for this new scssion is
associated with a N1D set which includes the NIT of ilic
external fogin.

Now consider property (2), which mvolves show-
mg that the NI set of a vertex vl contaius only NIDs
corresponding Lo external vertiees which have paths Lo
vl. Fhe proofl is by structural induction on the graph
G(V,F). The DRA algorithin updates the graph only
when a 58 message is processed (in this case, it creates
or updates a vertex) or when a SE message 1s processed
(in this case, it removes or updates a vertex).

Base Case: The geaph G{V,E) 1s emply (1.¢., no
user 18 on the system). The first thing that happens
musl be someone logging mto a host, A, from an exter-
nal device, IJ. A 85 message indicates a login from exter-
nal device is generated from host A. When the S5 mes-
sage 1s resolved, an external vertex v(D) with a unique
NID n1 and the vertex v1{ A, uid) associated with a NID
sel containing oniy nl are created. Therelore, property

(2) follows.

Inductive Step:  Assmine that the current graph
G(V E) satislies property (2).

The algorithm changes the graph when it resolves
a 88 or SI message. We have the following possibilities:



1. A 85 message is resolved. The algoritlun creates
an edge e(vl, v2) from the vertex corresponding to
the source session to the vertex corresponding to
the destination session. {Vertex v2 is created if it
does not exist.) 'Then, the algorithn updates the
NID set of v2 to include the NIDs in the NID set of
v1. Therefore, a NiD) in v2 is either (a) in ©2 before
ihe change, or (b) in v1. For case (a), the prop-
erty follows from the inductive assumption. For
case (b), the nductive assumption indicates that
the NID set of vl contains only NIDs associated
with vertices which have paths to v1. Since there
is an edge form vl Lo v2, those vertices have paths
to v2. Therefore, the property is satisfied.

2. A 5F message is resolved (i.e., a user terminale a
session). The algorithim removes the edge e{vl, v2)
from the vertex corresponding to the source session
to the verlex corresponding Lo the destination ses-
sioi, Then, it recompules Lhe NID set of v2 without
adding the NIDs in v1 into the sct. Therefore, the
property is satisfied.

5 Relaxing the DRA Assump-
tions

Towards a more realistic setting for DRA, we relax sev-
eral of the assumplions given in the algorithim above,
and describe how the DRA algorithm can possibly be
modified Lo accommodate these changes. As we indi-
cate, additional information is usually required (e.g.,
from the NSM)} and lLeuristics are used to attempt to
infer missing data or replace erroncous informaltion sup-
piied by the liost monitors.

5.1 DRA and Unmonitored Hosts

In order Lo properly track users across multiple logins,
the previously presented algorithm requires monitors
on all hosts, Complete accountability cannot be main-
tained if the user passes through an unmonitored host.
An attacker can simply cover his tracks by logging onto
an unmonitored Lost and then back onto the monitored
network. (Sce Figure 5.)  lowever, in many environ-
ments, hosts without monitors or even audit trails are
a reality, so we are working with a technology we call
thumbprinting to provide some measure of accountabil-
ity through unmonitored hosts {HIML92].

Suppose a user ul on host A performs a remote
login to user u2 on host B, and from lost B, perforins a
remote login to user u3d on host C. Furthermore, Losts
A and O are monitored hosts, and B is unmonitored.

mtrudena outside. gov

WNID: 17

maoves oulsidy the monitored
k, then back inside

. . skablishes isecond NI
und: legitonale

pid: 103%

wid: findname
pid: 801
uid: newnune

pid: 21017

host.esinsideedu host.cs.chair.edu

Figure G: An Intruder Moves Off and Back Onto A
Monitored Iost

Our goal 1s to deteriine that the activity belonging to
user ud on host C shoubd be mapped o the name NID
as user ul on host A, Certainly, without information
from Lost B, we do not know to whom the connection
from B to C belongs. For example, it could belong to a
user logged in at the console. However, by correlating
activity belween the two monitared hosts, A and €, we
can draw some conclusions regarding the retationship
hetween the connection from A to I3 and the connection
from B to C.

We start with the assumption that network connec-
tions to or from one of our monilored machines generate
some monitorable activity associated with the data flow
hetween the two machines. Furthermore, the connec-
tions from A to B and B to C are using standard logia
protocols (e.g., teleet, tlogin, remote shell, etc), services
where a user sends dala to the remote machine and the
remole machine replies with information (e.g., entering
a command on a cormmand line or entering texi in an
editor). If these assumptlions hold, we can determine,
with sorne degree of assurance, whether user u3 on host
C is really the same as user ul on host A by using what
we call thummbprints.

A thumbprint is a profile of connection activity over
a specified period of time [[IML92]. If two connections
have similar thumbprints over several segments of time,
then we can say with some amount of certainty that
the two connections are really part of an extended con-
nection. For example, we can view the two connections
discussed previously, A to B and B to C, as a single ex-
tended connection from A to C. Now, we can map the
activity from user u3 on host C to the same NI as user
ul on host A.

Furthermore, this technique can be extended to



conneelions moving through an woknown number of
monitared hosts, for example, A — Bl -2 32 — -
IBn — ¢ By comparing the thumbprints for the con-
nections A Lo B and Bn to C (n=1,2,...), we can map
the activily from the user on hosl C Lo the user on host

A

5.2 Out-of-Sequence Audit trails

Up to now, if a user logged on to a system and then
started a process that performed a sequence of ac-
Lions aq, @, ...y, and then terminated, we have assumed
thal the timestamps £ would be ordered as follows:
log onto systeny, < starl process, <0 ayy <0 . < gy <
cnd process,.

Ilowever, not all auditing systetns behave like this.
lFor example, some auditing systems produce the au-
dit records for the process belore producing the an-
dit. record signalling that the process has begun: ie.,
log onto systemny, < ayy < 0 < ayy < end process; <
start process,.

I the first case, we can use the (host) audit record
to deteet the ereation of @ new process with process
id p by the user with network id n. Henceforth, all
aclivitios associated with that process id would also be
accounted to N1IY n. Activity associated wilh process
id p that occurs later than the timestamp of the end
process action (end process,) is assumed to belong to
a distinet process whose process id is p only because
process ids are recycled.

In the second case, we recelve mformation about ac-
livities associated with process id p before we are able to
connecl that process id with NID n. llere, we cannot as-
sign the activities to NID nountil the start precess record
lias been received. Further, we expect to receive exactly
one record associated with process 1d p that occurs later
than the timestamp of the end process action (namely,
starf process), and activily associated with process id p
that occurs later than this timestamyp is now assuined
Lo Lelong Lo a distinet process.

Two ways to bandle this problem within a hetero-
geneous systen without modifying the audit process fol-
low.

e Place a filter or an agent on the host that re-orders
the records so that the timestamps of case 2 fulfill
the order we expect in case 1. One possible 1m-
plementation would require the host to record the
tune associated with the first observed occurrence
of a process 1d and then set the timestamp of the
starl, process action so that i is earlier than this
time but later than the last observed action of this
NII). ‘This enly solves the problem of delayed start

PrOCess MCssages.

o Add mformation about the method used to gener-
ate auditing paths on the source host Lo each andit
record, and use this information to group activi-
ties. This means that there mnust be some cenlral
location that has all of the possible audit protocols
embedded i the rules.

5.3 Clock Skew

One important assumption has been that the clocks of
all hosts are synchromzed. In reality, this will rarely be
the case.

The major problem of clock skew i1s that the al-
gorithm may pair up a wrong CS message with a CA
message. Consider the following scenario:

A user ul on host A tries to login to host B, so that
a CS message 5] is generated by host A al time L1,
However, the connection attempt fails, Later, another
user uZ2 on host A successfully logs m to host B using
the same connection that user ul used before. A €S
message (05y 1s generated by A at time t2 and a CA
message is generated by host B at time 63 ({1 < (2 < £3).
Our DRA algorithm pairs the CA message with C5;
since it is the most recent C8 message before the CA
iessage, [However, il the clocks of hosts A and B are not.
synchronized, the timestamp of the CA message may be
earlier than time t2, so that the algerithm will pair up
the CA miessage with 5] instead of C5,.

Denote the mintmal time period belween two con-
secutive connection attempts using the same connection
id by £, and the amount of clock skew between the
clocks in hosts A and T3 by &, If {1, < t,, the algo-
ritln is still correct. On the other hand, there is no
casy solution if £, > &,,. One possible way to handle
this situation is to pair a CA message not only with the
mast recent €S before it, but with CS messages within
a certain Lune period alter i as well, depending on the
amount of clock skew. However, the N1D set associated
with an activily record may contain extraneous NIDs.

5.4 Sharing of user id

At present, our DRA algorithm is unable to properly
assign NIDs in the case of two users logging on te a sec-
ond host under the same account name. The reason for
this is that the Host Monitor only supplies the process
id and the account name. Since the source lLiost does
not know the process id of the new process on the des-
tination host, and the account name used is identical,
it is not possible to correctly assign a NID to the new



process. As dicated in the discussion on the IHRA al-
gorithi, we assign the bebhavior on the second ost to
both N1Ds. If a more fine-grained deseription of the pro-
cess is provided (such as the Hy associated), it would be
possible Lo deterinine which NI should be assigned the
behavior. Networked PCs do not ajways provide even
the account vame associated with an activily, so this
probleny will appear in this type of environment as well.

6 Conclusions

We hiave presented an approach for distributed recogni-
tion and accountability (17IRA), the purpose of whicl is
to track users as they move from host Lo host in a net-
work and to account activity to the proper user. DRA
solves the problemn of tracking users as they might at-
tempt to change their wdentity in moving abont a net-
work. The physical environment we assuine is one in
which awdit trails are generated at cach host, and are
preprocessed; and the processed data are delivered to
a centralized site for analysis. The algorithim we pre-
senfed makes assumptions aboul the hosts in a network,
including: they are monitored and produce audit trails
for neltwork activity, they are synchronized, and the au-
dit trails are not tampered with. Under these assmnp-
tions, we presented an algorithim for DRA that is proved
correcl with respect 1o a specification that asserts that
activily is always accounted to the root souree that ini-
tiated the activity.

We have developed an intrusion detection systemn
DIDS (Distributed Inirusion Detection System) that
has DRA as its mam conceptl. DIDS consists of hosts
each running a host monitor, a LAN monitor {NSM}
that observes all network traffic, and the DIDS Diree-
tor thalt among other things implements the DRA algo-
rithm. DIDS was designed to work with up to 30 hosts
on asingle LAN segment. Qur implementation keeps up
with hosts generating up Lo 10 network activity records
per second.

The paper also presents extensions o our DRA al-
gorithin, mostly relaxing the assumptions that pernit-
ted a clean statement of the algorithin and its proof.
The main extensions relate to not requiring all hosts Lo
be monitored, to not requiring perfect synchironization
of hosts, and to allowing tampering of audit records by a
sitbverted host. Tu all of these cases, additional mforina-
tion is required to resolve erroneous reports from hosts;
the NSM can in some cases provide this additional in-
formation. In addition, hcuristics are employed Lo picce
together separate chains of sessions perhaps broken by
a malicious or unmonitored host.

IFurther extensious to DRA are under mvestigation

One involves extensions Lo much larger networks pre-
cluding the possibility of & smgle analysis center. In-
stead, the DRA analysis would itsell be distributed.
Other work is concerned with deternmining what audit
data a host should collect to facilitate DRA and other
trusion detection algorithms.

7 Acknowledgements

The original concept underlying DRA was suggested by
Steve Smaha who along with Che-Lin 1lo, John Fisher,
James Brentano, Steve Snapp, Tiun Grance, Dan Teal,
Dong Mansur, Ira Morrison, Bob Palasek and the au-
thors participated i the development of an intrusion
detection systemn for which DRA was central. A hard
coded version of DDRA 1s part of an intrusion detection
systemn {D1DS) currently under development at Trident
Systems, San Antonio. The work reported in this paper
was sponsored in part by the Air Force Cryptologie Sup-
port Center and the National Security Agency’s Univer-
sity Besearch Program

References

[I[[)L"".)(J] l.. Heberlein, G. has, K. Levnt, B. Mukherjee,
J. Wond, and D, Walber. A network security mon-
itor. Procecdings of the 18590 Symposium on Securily
end Privacy, pages 296-304, May 1990,

[HMLF491] L. Hebertein, B Mukherjee, K Levitt, €. Dias, and
). Mansur. Towards detecting intrusions in a net-
worked environment. Proceeding of the 141th DOE
Conference on Computer Security, 1991,

[HML42] L. leberlein, Bo Mukberjee, and K. Levitt. Internel
securily monitor: An intrusion-detection system for
large-scale networks. Proceedings of the 15th National

Computer Sccurity Conference, 1992,

(K F‘l{'i".-ﬁ] C. o, D Frinche, 1. Heberlein, K. Levitt, and
B. Mukherjee. An algorithm for distributed recogni-
tion and accountability. Technical report, CSF-93-7,
EICY Davis, November 1993,

[SBY91a]l 5. Snapp, J. Brentano, et al. DIDS (Distributed Intru-
sion Detection System)-Motivation, Architecture and
An Early Pratolype. Proceedings of the 159! Natfonal
Computer Securily Conference, 1991,

[SBty1l] S, Snapp, J. Breotano, et al. A system for distributed
intrusion detection, IEEE COMPCON, 1991,

[Smass] . Smaha. Haystack: An intrusion detection sy stem.
Proceedings of the IEEE Fourth Aerospace Compuler

Security Apphcations Conforence, 1988,



