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Abstract

Automated attack-graph tools show how individual vulnerabilities in a system
can be composed to create meta-vulnerabilities or how individual sensor alerts
can be joined to describe a multi-stage scenario attacks.  In recent years many
organizations have developed attack-graph type systems, but because these
organizations often do not clearly define their terms, consistently use terms such
as “attack-graph”, explain their assumptions, or identify their limitations,
comparing the various efforts is difficult at best.  This paper describes our efforts
to establish a taxonomic foundation for comparing and contrasting attack-graph
approaches, and we use the taxonomy to compare several important efforts in the
field.

1 Introduction
Attack graph systems is a growing field that focuses on how individual attacks can be

composed to create larger attack paths.  Such systems can answer questions such as “If an
attacker starts from a machine outside my network, is there a path that will allow him to
eventually read secret file CorporateSecrets?”  Or “If an attacker penetrates host X in my
network, how deeply into my network can he penetrate?”  The attack graph answers to such
questions can help prioritize the changes a network administrator makes to his network or
indicate where additional intrusion detection sensors should be installed.  Derivatives of the basic
attack graph work take intrusion detection sensor alerts and compose them into a single
composite alert.  This approach reduces the total number of alerts security analysts must process
and provides a context in which to understand an individual alert.

Unfortunately, while the attack graph field is growing in popularity, the lack of
definitions, inconsistent use of terms, and a lack of standard feature sets have made comparing
and contrasting different efforts very difficult.  This paper presents our early efforts to provide a
framework with which we can analyze efforts in this field.  Lincoln Labs and other efforts have
provided such a capability for intrusion detection systems [Hain 99], and we are trying to provide
a similar capability for this emerging field.

Section 2 develops the core security definitions upon which we will build our attack
graph terms.  In particular, Section 2.1 provides an overview of the core terms while the rest of
the section tries to develop them more formally.  Because of the wide variety of representations
for a “graph” in the literature, Section 3 develops our description of an attack graph that we
believe can adequately represent the other efforts.  Section 3 also identifies the salient features of
an “exploit” as used by most of these systems.  Section 4 develops several key features that can
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be used to compare and contrast attack graph efforts, and Section 5 briefly illustrates the features
by applying them to several attack graph efforts.  Finally, Section 6 summarizes the paper.

2 Definitions
While one of the primary focuses of the various attack graph efforts is to identify how an

adversary can chain together vulnerability exploitations to increase his capability, the papers
rarely explicitly define what they consider a vulnerability.  Furthermore, the wider literature in
computer security does not appear to provide a well-defined and widely accepted definition of a
vulnerability.

Publications outside the area of attack graphs do provide some definitions for
vulnerabilities, but they do not fit well with our needs.  Matt Bishop defines a vulnerability as
“Errors in computer systems and programs ... that enable users to violate the site security policy”
[Bish 99].  The problem with such a definition is that it assumes a site has a reasonably precise
security policy, and too often this is not the case.  The Program Analysis (PA) [Neum 78] and
Research into Secure Operating Systems (RISOS) primarily identify a list of flaws that can lead
to vulnerabilities.  In effect, they define a vulnerability through a serious of error exemplars.

Thus, although the word “vulnerability” is used regularly throughout the computer
security literature, especially on attack graphs, we have not been able to identify a definition for it
that is both concise and functional with respect to evaluating attack graph efforts.  This section
develops a series of definitions we will use throughout this paper.

Section 2.1 provides an overview of the key terms and their relationships to one another.
As developing formal definitions is important but makes for very dry reading, we have provide
this summary upfront to allow the reader to skip the more formal definitions, returning to them
only as needed.  Section 2.2 describes the terms in more detail.

2.1 Definition Overview
In a distributed environment we define a network reference monitor as the collection of

hosts’ reference monitors, the expected semantics defined by privileged programs and network
services, and network mediation devices such as firewalls and routers.  A vulnerability is a
condition that gives an adversary greater capability than would otherwise be expected given the
configuration of the network reference monitor.  The next several sections provide details on
these concepts.

Figure 1: Reference Monitors and Capabilities
Figure 1 summarizes the core definitions of this section.  Column A shows three sources

of reference monitors – components that determine if what operations a process can perform on
objects in the network.  The first reference monitor element in the column is the tradition kernel
reference, which uses a processes associated identities and objects’ access control lists to allow or
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block a process from performing certain operations on the objects.  The second reference monitor
element is the privileged programs.  Privileged programs add identities to a process, thereby
sidestepping the normal protections provided by the kernel’s reference monitor.  Usually these
privileged programs do not allow arbitrary operations to be performed with their newly granted
identities; instead, the privileged programs enforce their own security policies as defined by the
code.  The third reference monitor element is the network services.  Like privileged programs,
network services side step the operating system reference monitor by granting identities to
subjects, in this case the subjects may be on another host.  Also, like privileged programs, the
network services generally do not provide arbitrary access with their granted identities.  They
grant limited access as defined by their code.  The last element in the network reference monitor
is the network infrastructure, including routers, firewalls, and software wrappers.  These network
elements control access across a network.

Column B in Figure 1 shows the sources of capabilities and the lines with column A
indicate the reference monitor elements that control these capabilities.  The first capability source,
called Base, is what is provided a normal process on an operating system.  The process has a
specific set of identities, and the kernel’s reference monitor uses the access control list for objects
under its control to determine the processes set of capabilities (operations that it can perform on
the objects).  The second capability source, called Privilege, is the set of additional operations that
can be performed because of additional identities granted by the privileged programs.  These
privileges are controlled by the kernel’s reference monitor, which limits access to the privileged
program, and the logic in the privileged program itself.  The third capability source, called
Network, is the set of capabilities provided to a subject by network services.  The network
infrastructure may limit access to the network service, and the network service provides its own
limitations as defined by its code.

Column C in Figure 1 shows a capability matrix, a derivative of the access matrix, that
shows (via a check mark) which operations an adversary can perform on which objects in the
network.  Not shown is the set of identities (e.g., users and group IDs on various hosts) controlled
by the adversary.  These identities, combined with the reference monitors, determine the
capability matrix.

A vulnerability is then defined as a set of conditions that enable the adversary to add
capabilities (e.g., add one or more checks to the capability matrix).  An exploit is a set of
instructions (in code, a script, or steps to be manually carried out) designed to take advantage of
the vulnerability and provides specific capabilities to the adversary (checks to the matrix).  An
attack is the action of carrying out an exploit and adding to add a capability.

2.2 More Formal Definitions

2.2.1 Reference Monitors
In this section we discuss our model of a reference monitor.  As we are looking at attack

graphs across a network with attacks frequently taking advantage of privileged programs and
network services, we look at a distributed reference monitor composed of traditional host
reference monitors, the reference monitors enforced by logic in privileged programs and network
services, and the reference monitor created by network mediating devices such as firewalls.

For the purpose of our discussions we assume nodes in the network support a reference
monitor as largely defined by Karger and Schell [Karg 74]:

Definition: Reference Monitor – a hardware/software combination that monitors and
mediates all references by programs to all resources controlled by the operating system.
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The definition presumes that processes must be associated with one or more identities
(e.g., users and groups), and resources (files, devices, processes) must support a form of access
control list (ACL) that define which identities can perform what operations on them (e.g.,
permission lists).  In short, the ACLs define the normal capabilities (the ability to manipulate
resources controlled by the operating system) available to a process running with a given set of
identities, and the reference monitor enforces that definition.

Some kernel reference monitors support richer semantics; for example, access may also
be controlled by the application that gave rise to the process.  More concretely, a semantically
richer reference monitor could limit processes generated by executing the passwd program, which
runs with the root identity, to only reading and modifying the appropriate password files.
However, our focus here is on basic components widely available in today’s networks.

Modern operating systems support the concept of privileged programs.  A privileged
program grants a subject with an existing process on the system additional capabilities.  The
privileged program runs with (presumably) identities not currently available to the subject, so the
subject can in theory perform more operations than the kernel reference monitor would otherwise
allow.  In general the privileged programs do not allow the adversary to perform arbitrary actions
with their newly granted identities but instead enforce their own access controls via policies
defined by the program’s code.  Unfortunately, few privileged programs and network services
concisely and explicitly define their security policies.

Definition: Privileged Programs Reference Monitor – the collection of privileged
programs that provide additional identities to processes and the restrictions those
programs provide by their own internal logic.

Similarly, most modern operating systems support network services – programs that
interact with entities across a network.  These network services run with their own identities on a
host, so they can potentially provide any remote entity with all privileges on the host available to
the program’s identities; however, as with privileged programs, the network services typically
restrict what a remote entity can do through its own security policy defined by the program.  And
as with privileged programs, networks services rarely concisely and explicitly define their
security policy

Definition: Network Services Reference Monitor – the collection of network services
that provide additional identities to processes and the restrictions those programs
provide by their own internal logic.

The security policies for the privileged programs network services are defined by their
code, but since the code for these programs are often not widely available and rarely reviewed
and understood by personnel at most sites, we claim the security policy for there programs are
defined by their “expected behaviors.”

Finally, as we are operating in a networked environment, we define a third component of
the distributed reference monitor, the Network Reference Monitor.  While network services
provide identities to remote entities, components such as firewalls may prevent some remote
entities from taking advantage of the network services.

Definition: Network Reference Monitor – the collection of hardware (i.e., routers,
switches, and firewalls) and software that monitor and mediate communications
between hosts.  The security policy for the network reference monitor is distributed
across ACLs defined for each mediating component.

To conclude this section, in a networked environment the reference monitor
responsibility is distributed between (1) the hosts’ operating system reference monitors, (2) the
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privileged programs on the hosts, (3) network services on the hosts, and (4) the network devices
and software that mediate communication between hosts.

2.2.2 Adversary Capabilities
This section provides our basic view of capabilities, and it is very closely tied to the

various reference monitor components listed in the previous section.  We begin with the two
simple definitions of an adversary and capability, and then we refine the capability concept in
terms of the reference monitor pieces.

Definition: Adversary – a subject that may consist of any number of humans and
programs working together to perform actions in the environment against the wishes of the
owner(s) of the environment.

For our purposes we want to measure a set of systems and resources with respect to some
adversary’s ability to interact with those resources.  The adversary may be a single interactive
human intruder.  The adversary may be a group of humans working in a coordinated fashion.  The
adversary may be an automated and independent program that can divide and propagate
throughout the organization.  The adversary may begin “inside” the organization, “outside” the
organization, or both.  We may want to measure how many resources an adversary can acquire, or
we may want to determine if an adversary can access a specific resource.

Definition: Capability – the ability of a process with a given set of identities to perform a
given operation on an object.

A more formal definition of “capability” can be found in [Bish 03], but our simple triple
(identities, operation, object) captures what we need.  For example, “a process (e.g., an editor)
owned by Bob (the identity) can read (the operation) the file foobar (the object)” defines a
capability.

On each system in the network the adversary has set of capabilities defined by the set of
identities controlled by the adversary and the various reference monitors and their security
policies (e.g., ACLs) that they enforce.  Following the three elements of the reference monitor
described in the previous section we refine the set of adversary capabilities into three groups: the
Base Adversary Capability, the Privileged Adversary Capability, and the Network Adversary
Capability.

Definition: Base Adversary Capability(I) – Let I be the set of identities controlled by
the adversary.  Then the Base Adversary Capability(I) is the set of all operation-object
pairs allowed by the Reference Monitor for the identities in I.

Essentially, the Base Adversary Capability identifies what the adversary can normally do
on a system without relying on any special programs or services.

Most modern operating systems support the concept of a privileged program that grants
the adversary an additional set of identities.  For example, UNIX-class operating systems support
the Set User ID (SUID) and Set Group ID (SGID) programs that can add additional user and
group identities to a process.  My Mac OS 10.3.3 system currently has 81 such programs
installed.  As mentioned in the previous section, these programs, in effect, bypass the security
provided by the Reference Monitor and provide the adversary with the theoretical ability to
perform any actions allowed by granted privileges.  The privileges and restrictions on these
privileges (as encoded by the program logic) are controlled by what we described as the
Privileged Program Reference Monitor.  The capabilities provided to the adversary on a host are
defined as follows:



6

Definition: Privileged Adversary Capability(I) – Let I be the set of identities
controlled by the adversary.  Then the set Privileged Adversary Capability(I) is the set
of all operation-object pairs allowed by the combination of the Reference Monitor
(which controls access to the privileged programs) and the Privileged Program
Reference Monitor for the set of identities I.

In addition to privileged programs, most modern operating systems provide the capability
to run a network service – a program that interacts with entities across a network (e.g., a web
server).  The network service runs with a given set of identities on its host system.  Whereas the
operating system Reference Monitor controls access to privileged programs, the Network
Security Monitor controls access to the network services, so they help define the capabilities
provided to the adversary.

Definition: Network Adversary Capability(IH) – Let IH be the set of identity-host
combinations controlled by the adversary.  Then the Network Adversary Capability(IH)
on a single host is the set of all operations-object pairs allowed on the host by the
combination of Network Reference Monitor and the Network Service Reference
Monitor of the set of identities IH.

The Network Adversary Capability does not include identity parameter, I.  This is
because the operating system’s reference monitor does not, in general, mediate access to the
network services.  The reference monitor capability is essentially distributed to the network
infrastructure (e.g., firewalls, routers, and other network wrappers) that determines if an
adversary can reach the network service and by the network service itself, which is responsible
for providing any identification and authentication capability and imposing any restrictions based
on the provided identification.

The adversary’s total capability is then based on the union of each of these capabilities
across all hosts.  On many hosts, the initial identity set, I, will be empty, but depending on the
availability of a network services and the Network Reference Monitor, the Network Adversary
Capability may be non-empty.  Thus we add the following definition:

Definition: Total Adversary Capability(IH) – Let IH be the set of identity-host
combinations controlled by the adversary.  Then the Total Adversary Capability(IH) is
the union across all nodes in the network of the Base Adversary Capability(I), the
Privileged Adversary Capability(I), and Network Adversary Capability(IH), where I is
identities available to the adversary on each host.

To summarize this section, an adversary is the actor, which can be any combination of
users and programs, attempting perform actions against at odds to the wishes of the owner of the
environment.  The Total Adversary Capability defines all the operations on all the objects in the
network that the adversary can perform as defined by the distributed reference monitor.

2.2.3 Expected Semantics
In the previous section we used the phrase “expected semantics” for privileged programs

and network services, and this phrase is one source of difficulty when trying to reach a consensus
on what a vulnerability is.  For example, suppose a privileged or network program has a little
used and little known feature that provides additional capabilities.  For example, the “debug”
command in many Sendmail servers circa 1988 was added to help debug the server’s behavior
and was used by the Morris Worm.  More recently, applications on Windows systems can read a
users address book and send email, a feature widely exploited in email-based worms.  Are these
examples of vulnerabilities or features?
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Unfortunately, few privileged programs and network services provide explicit, complete,
and concise descriptions of what they should do, and this complicates the job of securing a site.
For example, in the mid 1990s UC Davis developed specification-based detection, a technique
that detected attacks by detecting unspecified behavior of privileged programs and network
services [Ko 97], and later Network Associates and other organizations applied similar techniques
to operating system wrappers, essentially extensions to the reference monitor [Ko 01], but in each
case researchers needed to develop their own specifications for the relevant programs.  No
existing database of specifications exists for these programs.  Furthermore many individuals and
sites develop their own privileged programs for various reasons.  Also, new programs seem to
appear daily that include a network server component, and often these services are not adequately
described in the documentation.

Thus, without formal and widely agreed upon specifications for the behavior of
privileged programs and network services we must settle on a much less formal term: “expected
semantics”.

2.2.4 Vulnerability
Previously we defined the TotalAdversaryCapability as the set of all activity on all

objects an adversary could perform as defined by the reference monitors, network reference
monitor, and the expected behaviors of the privileged programs and network services.  Let us
define a partial ordering for this set such that TotalAdversaryCapability1 <=
TotalAdversaryCapability2 if and only if an adversary with TotalAdversaryCapability2 can
perform all actions on all resources that an adversary with TotalAdversaryCapability1 can.

Definition 1: Vulnerability – a set of conditions that allow an adversary with the
capability set TotalAdversaryCapabilityi to achieve a capability set
TotalAdversaryCapabilityi+1, such that TotalAdversaryCapabilityi <
TotalAdversaryCapabilityi+1.

In other words, a vulnerability is a set of conditions (i.e., programming flaw (e.g., buffer
overflow in a program) or configuration flaw (e.g., permissions that allow the password file to be
replaced)) that allows the adversary to acquire additional capabilities.

3 Normalizing Attack Graph Efforts
With core definitions security definition in place, this section looks at common

definitions specific to the attack graph field.  In particular, in Section 3.1 we briefly look at the
different ways “graphs” are used in attack graph efforts, and in Section 3.2 we identify how an
exploit is described in the various efforts.

3.1 Attack Graphs

Figure 2: Various Attack Graphs
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One particular problem when comparing various attack graph efforts is that the different
publications present their “attack graphs” differently.  Figure 2 shows three different
representations used in the literature.  Graph A is from the Kuang work as shown in [Bald 90],
and each node represents a goal with arrows shows the goal/subgoal relationships.  Graph B is
based on the GMU work described in [Amma 02], and each node represents a state in the network
with arrows showing how an exploit takes advantage of some conditions to enable subsequent
conditions.  Graph C is based on the CMU work [Shey 02], and each node represents a specific
attack with the arrows showing the order of attacks.

Fortunately, each of these graphs can be mapped into what we call a canonical graph
representation (see Figure 3).  In this model, each node represents the state of the entire system at
a given point in time.  Furthermore, we divide the state into two subgroups.  The first subgroup,
visually depicted in the upper half of the node, represents the state of the network itself, including
the presence of programming flaws in programs or whether a particular user has write access to a
file.  The second subgroup, in the lower half of the node, represents the identities (e.g., users and
groups) across the network acquired by the adversary.  As mentioned previously, these two
components of the system state (network state and adversary identities) can be combined to create
the capability matrix shown in Figure 1, so we could also create a graph in which the nodes
represent the adversary capability matrix at any moment in time.  However, we believe the
network state and adversary identities nodes are more intuitive.

The arcs in the graph represent an attack that changes the state of the network, and we
label the attack arc with the exploit used.  An attack changes the state by adding an identity to the
adversary’s set (exploit 1 to node in middle), changing the network state (exploit 2 to node on
right), or a combination.

Figure 3: Canonical Attack Graph

3.2 Exploit Specification
While the various attack graph efforts we reviewed varied widely regarding what the

nodes and arcs were in the graphs they displayed, the various efforts were much closer in their
representations of exploits.  In or canonical graph model in Figure 3, the exploits are the means
by which the system transitions from one state to another.  Figure 4 shows examples for
specifying the same exploit in three different systems – an attack against a buffer overflow
vulnerability in an ssh daemon.  The specification in column A is from the CMU effort [Shey 02];
column B shows a JESS expert system rule from a class project at UC Davis; and column C
shows the exploit in the Requires/Provides system developed at UC Davis [Temp 00].

Every attack graph effort we reviewed supported the same basic structure: a set of
preconditions that needed to be satisfied before the exploit could be carried out and a set of post-
conditions that described the change of state in the system.  The authors of the various projects
typically used different names (e.g., preconditions and affects (CMU effort), predicates and
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actions (JESS version), requires and provides (UCD [Temp 00] effort), and goals and subgoals
(Kuang [Bald 90])), but all the efforts used the same basic approach.  In the examples in Figure 4
the precondition part of the exploit rule is highlighted in gray.

Figure 4: Examples of Specifying an Exploit

4 Attack Graph Features
In this section we examine several key features that can be used to compare and contrast

attack graph systems.

4.1 Monotonic vs. Non-monotonic Exploits
A monotonic function is a function f() for which f(x) >= f(x′) for x >= x′.  A strictly

monotonic function is one for which f(x) > f(x′) when x ≠ x′.  We can define exploits similarly.
We define the capability matrix after stage s as C(s), and the capability matrix at stage s+1 after
an exploit as C(s+1).  If after an exploit is launched at stage s and C(s+1) ⊃ C(s), then the exploit
is strictly monotonic.  Essentially a monotonic exploit is one that adds capabilities and for which
no capabilities are lost.

From a practical point of view, what does this mean?  Imagine an exploit E0 that has
preconditions P1 and P2 will allow an adversary to reach his goal.  Furthermore, suppose exploit
E1 provides the precondition P1, and exploit E2 provides the precondition P2.  If E1 and E2 are
both monotonic attacks, the adversary can launch E1 followed by E2 or launch E2 followed by
E1.  The order does not matter.  However, suppose exploit E1 is non-monotonic (e.g., it takes
away some capability) such that it invalidates the preconditions needed for E2.  Then if the
adversary launches exploit E1 first, then he cannot launch exploit E2 because the preconditions
for it no longer hold.  Thus, the adversary cannot not satisfy precondition P2, so he cannot carry
out exploit E0 to achieve his goal.  On the other hand, if the adversary launches exploit E2, he can
then launch E1 followed by E0 and achieve his goal.  Thus, from the adversary point of view, for
an approach that supports non-monotonic exploits, the order in which attacks take place matters.
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From our modeling point of view, a system that supports non-monotonic exploits requires
many more possible states to be explored.

Most attack graph efforts only work with monotonic exploits; although, most efforts do
not state this or may even be unaware of it.  For example, the exploit rule in column B of Figure 4
shows what appears to be a non-monotonic rule: the line “(retract ?ssh)” removes a potential
capability.  However, such a rule could potentially result in a false negative (the system reporting
that there is no attack path when in fact there is) depending on the order of rule execution.  Of the
systems we reviewed, only the ones based on symbolic model checkers could effectively handle
non-monotonic exploits.

While monotonic vs. non-monotonic exploits pose interesting challenges, Paul Ammann,
who has developed systems that support both approaches ([Ritc 00] for non-monotonic exploits
and [Amma 02] for monotonic exploits), claims in [Amma 02] that it is only an academic interest
since in their experience with building a database of exploits, all exploits can be reasonably
modeled as monotonic attacks.

4.2 Single Path vs. All Path
An attack graph system can produce a single attack path showing one example of how an

adversary can achieve his goal, or the system can produce all possible paths.  If a system
generates all attack paths, additional graph-based analysis can be performed such as identifying
which vulnerabilities contribute to most attack paths or identifying the minimal set of
vulnerabilities that need to be removed to prevent the adversary from reaching a particular goal.

Most systems we reviewed generated a single attack path.  In many cases this was a side
effect of the system they were using.  For example, many symbolic model checkers only generate
a single counter example (the attack path).  Likewise, expert systems typically stop once a goal
has been achieved.

4.3 Forward vs. Backward Chaining
Some attach graph system use forward chaining techniques, while other exploit backward

chaining techniques.  Backward chaining systems such as the original Kuang [Bald 90] and many
since then start with a goal (e.g, acquire the root identity on a particular system).  Then the system
finds exploits for which the post-condition portion matches the goal.  If the preconditions of an
exploit are already satisfied, then an attack path is found from the initial condition to the goal;
otherwise, the preconditions of the exploit are added to a set of goals to be satisfied.

Forward chaining systems such as the GMU work described in [Amma 02] start with the
existing conditions and finds exploits for which the precondition portions match the existing
conditions.  Exploits found to match these conditions are executed, the new conditions (i.e.,
capabilities) are added to the system, and the process continues until no more exploit
preconditions can be matched to the conditions or some goal is achieved.

One advantage forward chaining has over backward chaining is that the user does not
need to identify a specific goal for the adversary to achieve.  The user could simply ask, “given
the following network conditions, an adversary controlling the following initial identities, and the
adversary knowing the following exploits, how far into my network can he penetrate?”

While not entirely accurate, backward chaining systems can be viewed as a depth-first
search, while forward chaining systems can be viewed as a breadth-first search.

We have read some claims that backward chaining is more efficient because states that
are not necessary to achieving the goal are never explored.  However, from our experience with
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backward chaining systems, a tremendous amount of backtracking often occurs when trying to
find a path.  We have not read any detailed arguments or seen any experimental evidence
indicating under which conditions one approach is more efficient than the other.

4.4 Building on Existing Framework or Hand-rolled Code
Many attack graph systems build on existing frameworks, while other efforts are coded

from scratch.  For example, the CMU work [Shey 02] used the NuSMV symbolic model checker,
the initial Booz Allen & Hamilton and GMU work [Ritch 00] used the SMV symbolic model
checker, and the student-based effort referred to earlier (Section 3.2) used the JESS expert
system.  Other efforts such as GMU’s later work [Amma 02], the Sandia National Laboratories’
work [Swil 01], and the original Kuang effort [Bald 90] essentially rolled their own code.

One side effect of building on existing frameworks is that the authors can often borrow
claims from the framework they are using.  Furthermore, by building on existing frameworks, the
authors can typically point readers to additional literature that describes the underlying execution
engines.

4.5 Formal Claims
Some papers simply describe their system’s ability to generate graphs while others make

explicit formal claims about their efforts.  For example, [Shey 02] state that their approach is
exhaustive (all possible attack paths are identified), and the number of states and transitions
identified are minimal (e.g., all states and transitions are part of at least one attack path).
Likewise, [Amma 02] explicitly describes their algorithm and identifies upper bounds on
performance based on the number states in the network and exploits known to the system.

4.6 Performance
Few papers made any explicit performance claims or backed them up with actual results,

and most efforts only illustrated their system with toy examples (e.g, three hosts and handful of
exploits).  The Kuang documentation [Bald 90] states that they ran their tool on a host with 300
users and 25 groups (in the early 90s the authors ran the tool on similarly large systems), but no
specific times are reported.  NetKuang [Zerk 96] was run on a real network of ten workstations
with an average performance of finding the first attack path of 6.2 seconds.

The CMU work [Shey 02] described the performance of a simple model (3 hosts, 4
attacks) that took 5 seconds.  When the model was expanded to 5 hosts and 8 attacks, the system
took 2 hours.  While these numbers certainly raise concern, this system produces all attack paths
(not just the first one it finds) and it supports non-monotonic exploits.  Furthermore, in personal
communications Sheyner has stated that there have been a number of performance enhancements
since this publication.

While our discussions have primarily focused on performance with respect to time,
memory requirements can also be a limiting factor.  On this issue, most publications are silent;
however, as the efforts scale to production networks with large amounts of state that must be
supported, this will certainly become an issue.

Feature Summary
In this section we identified a number of important features that can be used when

comparing and contrasting attack graph efforts.  These include:

• Supporting monotonic vs. non-monotonic exploits.  This attribute describes the range of
exploits the system can support.
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• Single path vs. all paths.  This attribute indicates whether the system generates a single
attack path or all possible attack paths.

• Forward vs. Backward chaining.  This attribute describes how the basic execution engine
works (by matching post-conditions and trying to satisfy preconditions (backward
chaining), or by matching preconditions and modifying the state with the post-conditions
(forward chaining).

• Building on existing frameworks or using original code.  This attribute tells whether the
system makes use of existing execution engines.

• Formal claims.  This attributes describes the actual claims made by the authors about the
system.

• Performance.  This attribute describes the upper and expected time and space
performance of the approach.  Typical factors affecting the results include the amount of
state in the network, the number of exploits known, and the number of nodes and arcs in
the final attack graph.

5 Example Analysis
With several important features used for comparing and contrasting attack graph efforts,

we now briefly map various attack graph efforts onto this feature set.

5.1 Kuang System
The SU-Kuang system (Simple UNIX Kuang), developed in the late 1980s and early

1990s by Robert Baldwin [Bald 90] is, to our knowledge, the first attack graph system.  Baldwin
considered all attack graph type systems to be Kuang systems, and his implementation was
simply one instantiation.

Attributes Value
Monotonic vs. non-monotonic exploits: Monotonic

Single path vs. all paths Single path
Forward vs. backward chaining Backward chaining
Building on existing framework No

Formal claims: None
Performance: No numbers provided, but system has been run on

relatively large production systems.

5.2 Carnegie Mellon University Work
The Carnegie Mellon University group originally teamed with Lincoln Labs to develop

an attack graph system; although, both groups have gone their separate ways since.  Below is the
summarization of their system as described in [Shey 02].

Attributes Value
Monotonic vs. non-monotonic exploits: Non-monotonic

Single path vs. all paths All paths
Forward vs. Backward chaining Backward chaining
Building on existing framework Modified NuSMV

Formal claims: Several
Performance: Potentially exponential, actual numbers provided.
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5.3 George Mason Work
George Mason University originally teamed with Booz Allen & Hamilton to develop a

system based on the SMV symbolic model checker [Ritch 00], but later GMU, concerned about
the scalability issues abandoned the model checker in favor of a hand-coded implementation
[Amma 02].

Attributes Value
Monotonic vs. non-monotonic exploits: Monotonic

Single path vs. all paths All paths
Forward vs. Backward chaining Forward chaining
Building on existing framework No

Formal claims: Several
Performance: Bounded by the size of the resulting attack graph,

not the exponential number of potential states.

6 Conclusions
Attack graphs, a field in which individual attacks are composed to create larger attack

paths, have grown in popularity in recent years, but the lack of definitions, inconsistent use of
terms, and a lack of standard feature sets have made comparing and contrasting different efforts
very difficult.  In this paper presents our current work to develop a standard framework for
comparing and contrasting attack graph.

Our first efforts were to define the term “vulnerability”.  The term is used freely in all the
publications and the definition of which would appear obvious, but as we discovered the term is
difficult to define.  Ultimately we defined a number of terms to support our definition of
vulnerability, and finally had to fall back on “reasonable expectation” with regards to how we
think the network should behave.

Next, we normalize the efforts by coming up with a standard representation of an attack
graph.  We settled on a node in the graph representing the entire system state, including variables
in the network such as whether a particular programming flaw exists in a program and the set of
identities acquired by the adversary, and arcs in the graph representing the adversary using an
exploit to transform the system state.  We claimed, but did not provide proof, that the other forms
of attack graphs could all be mapped to our form.

We also looked at the representation of exploits, but unlike the attack graphs themselves,
the various efforts proved to be relatively consistent in their design if not necessarily in their
terminology.  Virtually all efforts defined a set of preconditions that needed to be met in order to
carry out an exploit and a set of post-conditions that defined the changes in the system following
the exploit.

With definitions and normalization efforts in place, we then developed an initial set of
features by which we could compare attack graph efforts.  These features are (1) monotonic vs.
non-monotonic exploits, (2) generating single attack path vs. all attack paths, (3) forward vs.
backward chaining execution engines, (4) building on existing frameworks vs. original code, (5)
formal claims that can be made about the system and results, and (6) the performance of the
system in terms of performance and memory.  To illustrate the use of these features, we briefly
applied them to three attack graph systems.
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