Automatic Signature Generation:
Report On The Initial Implementation

Todd Heberlein

This report describes the current status of our Automatic Signature Generation
project. The primary goal of the effort to is quickly identify signatures for a new
attack with the theoretically lowest possible false positive rates. The report
covers the goals of the project, concept of operations, the core technology, and
the current state of the implementation. The most important point for this report
is we now have a running implementation, and in fact we are on our second-
generation implementation and have designed our third-generation that can
scale to support terabytes of data.
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1 Introduction

This report describes our Automatic Signature Generation project, the technology we use,
the current level of implementation, and experimental results. The concepts and technology we
use are relatively unique in the field of intrusion detection, so Sections 2, 3, and 4 provide
background information and describe our overall goals for the project, the concept of operations,
and the core technology used. Readers who have read previous papers on our efforts can
probably skip these sections.

Section 5 describes the most recent accomplishments. The key point is that we now have
an implementation running of the key technology. The code processes packets from a file and
builds a suffix tree. Our implementation is based on the Ukkonen algorithm [Ukko 95], which
processes the data in linear time with respect to the data; similarly the size of the tree is linear
with respect to the size of the data. We have run the algorithm on a number of packet sources,
and we present two experimental runs that demonstrate how the behavior of the suffix tree is
affected by the type of data being processed.

Finally Section 6 summarizes the work and Section 7 provides references to relevant
material.

2 Goals of the Project

The Automatic Signature Generation (ASG) project is primarily motivated by the
following observations: (1) signature-based network IDS sensors often generate a large number of
false alarms engendering a general distrust amongst their users, and (2) signatures cannot be
generated quickly enough to play a role in fighting fast moving new attacks such as worms.

The false positive issue creates several problems. First, the high numbers of false
positives creates additional workload on analysts. Second, the high false positive rates may
encourage analysts to ignore certain reports or to simply turn off the signature responsible for the
false positives. In either case, this may allow actual attacks to go unnoticed. Third, because of
experience with the high false positive rates, network administrators are hesitant to use intrusion
protection mechanisms available to many systems. Thus, while many network sensors can stop
attacks from reaching their targets, operators refuse to use the capability.

So, our first goal is to create better signatures with extremely low false positive rates. In
order to achieve better false positive rates we need to test candidate signatures against large sets
of appropriately selected traffic, and this must be done so that it is not a burden to the analysts.

The second problem, the long time to create and deploy new signatures, causes intrusion
detection systems (IDS) and intrusion prevention systems (IPS) to miss their sweet spot in
capability — the time between when an attack first starts to circulate and the time a patch is widely
applied. It is during this limited window of time that sensors offer the greatest value to the
operators. For example, Cisco has created Cisco Network Admission Control (CNAC)
technology that allows network devices to block network access to systems that are not patched
[Cisc 03] [Leyd 03] [Robe 03], and as technologies such as this are fielded, the value of detecting
attacks against vulnerabilities for which there are patches will diminish because most systems
will be patched.

Thus our second goal is to greatly accelerate the time to create a signature so they can be
fielded while they are most valuable. This is particularly important in the case of fast moving
automated attacks such as worms.
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Both goals are intrinsically linked. If we can quickly measure a candidate signature’s
false alarm rate against a large representative data set, we encourage the creation of better-tested
signatures, and if the testing of candidate signatures is fast enough, we can use automated
techniques to test large sets of candidate signatures and deploy the best signature (or signatures)
in IDS and IPS devices.

3 Concept of Operations

In Section 2 we introduced the two core problems we propose to address: (1) false
positive rates and (2) time required to generate quality signatures. In this section, in order to
further illustrate the problems and examine how our proposed technology will address them, we
look at four concepts of operations: (1) improving existing approaches, (2) automating existing
approaches, (3) protecting critical services against zero-day attacks, and (4) protecting an
enterprise against fast-moving, automated attacks such as worms.

Improve existing approaches to generating signatures for IDS systems. A typical
approach for generating a signature for a newly discovered attack is to have an analyst examine
the attack, generate a candidate signature, optionally test the signatures against an archive of past
data, and deploy the signature in fielded systems. The testing of a single candidate signature
against large amounts of past traffic (e.g., terabytes) may take hours, and if the analyst needs to
perform several iterations of testing to refine the signature, the process may take days.

Our approach pre-processes the terabytes of archived network traffic so that testing a
candidate signature against the archive will take about a second. This greatly improved turn-
around time on testing should (1) increase the probability that an analyst will test a signature
before deploying it, (2) allow the analyst to quickly refine the signature so that he can generate
higher quality signatures, and (3) improve the time from detection of a new attack to deployment
of a high-quality signature.

Automatically generate signatures for IDS systems. In some cases a human analyst in
the loop may not be possible, or an organization may want to reposition the role of the human
analysts. For example, some organizations may not have analysts available 24 hours a day, 7
days a week, or the attack may exploit an application that the analyst is not familiar with. In
these cases, the system can automatically generate candidate signatures with the lowest possible
false alarm rates.

We can achieve automatic signature generation because the testing of a candidate
signature is so fast. We perform this by taking a sample of the attack and generating all possible
candidate signatures (i.e., all possible substrings) and testing each against the terabytes of data. A
set of candidate signatures with the lowest false positive rates will be presented to the analyst for
review.

Protect mission critical services. While the traditional approach for creating signatures
for IDS sensors may take a long time, creating, testing, and deploying a patch for a vulnerability
in an application or service often takes much longer. Thus, in order to allow a mission critical
service to continue operating in the face of a zero-day attack (e.g., an attack against an unknown
vulnerability for which there is no known patch available) we need to stop the attack before it
reaches the vulnerable service.

Fortunately, several companies are starting to deploy deep inspection firewalls, firewalls
that can examine the content of packets and terminate sessions containing data matching a
signature. By combining our ability to automatically and quickly generate high-quality signatures
for new attacks with deep inspection firewalls positioned in front of the vulnerable service, we



Net Squared, Inc. TR-2004-01-20.01

create the capability to allow the mission critical service to operate with minimum impact on
legitimate activity until a fix for the vulnerability can be found.

Stop the spread of automated attacks. Since about 1993 attackers have been
embedding their attacks into software that can scan large swaths a network in seconds to minutes,
and since about 2000 attackers have been embedding their attacks in self-propagating code that
can infect much of the Internet in minutes to hours. Thus, even if a patch is available, there is no
time to apply the patches to the many vulnerable systems, and if it is a zero-day attack, all the
applications are vulnerable.

However, as in the previous case, by combining the quick and automatic generation of
high-quality signatures with deep inspection firewalls distributed throughout an enterprise, we
can quickly deploy a stop-gap measure (signature in a firewall) that will protect most of the
machines from the automated attack until patches can be created, tested, and widely deployed.

4 Suffix Tree Concept

In this section we demonstrate the approach through a trivial example. For a more
realistic example, the suffix trees are too complex to be reasonably displayed on a standard page.

Figure 1 shows a suffix tree for our fixed text “xabxac”. This text represents traces of
past network activity. Each path from the root to a leaf node represents a suffix in the original
text T, and at each leaf is an index indicating the position in the text T for that suffix. For
example, the left-most branch of our tree represents the suffix “bxac”, and the index “3” tells us
that this suffix begins at the third letter in the original text. We also have several numbers in
parentheses, one at each leaf node and one at each branching location. These numbers will tell us
how often a particular pattern is found in the original text. For example, the top right branch
begins with the string “xa” before hitting a branch labeled with “(2)”. This tells us that the string
“xa” is found in the original text two times. For our purposes, these numbers tell us the false
positive rates for a candidate signature.

number of times pattern was

T: xabxac ﬁ_\( observed in original text

X a (2)b x a ¢

* 1(1)

index into original text where
the pattern can be found

2
Figure 1: Example of a Suffix Tree

Figure 2 shows a captured attack “xax”. How the initial attack is captured is outside the
scope of this proposal. A honeypot may have been used, or a system such as ASIM that captures
and stores all packets for a limited time (somewhat like an airplane flight recorder) may have
captured the data. For illustration purposes, we will look at all possible signatures of at least two
characters. For this attack we have two candidate signature: “xa” and “ax”. These will be tested
against our suffix tree of historical activity.
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Historical Data: xabxac Attack: x a x Candidate Signatures: x a
ax

Figure 2: Attack Data and Potential Signatures

Figure 3 shows how the candidate signatures are tested against the historical data in order
to identify false positive rates. Only the relevant portions of the suffix tree are shown in the
figure. On the left side of the figure we show the testing of the first candidate signature, “xa”.
We test the signature by traversing the suffix tree with the same pattern. As shown, “xa” follows
the top-most right branch. Because we reach the end of the candidate signature while we are still
in the tree, we know the pattern does in fact exist in the historical data. Furthermore, by
following the current tree segment to the next branching location or leaf node (whichever comes
first), we arrive at a number in parentheses telling us how frequently the pattern occurs in the
data. In this case, the pattern “xa” occurs twice in the historical data.

On the right side of Figure 3 we test the second candidate signature, “ax”. Once again,
we start traversing the tree beginning with the branch that begins with the character “a”. We
immediately hit a branching location, but none of the branches follow with the next letter in the
candidate signature, ‘x’. Because, by starting with the root of the suffix tree we could not find the
pattern “ax” in the suffix tree, we know this pattern does not exist in the historical data. The
string “ax” should be our signature for detecting the attack “xax”.

X a 2)b x a c
® *1(1)
c

4 5(1)
2 (1)
Test of: x a Test of: a x

Figure 3: Testing Candidate Signatures
S Experimental Results

5.1 Scaling Factors

The key to the entire project is that whether you have 100 bytes of test data or 100
terabytes of test data, to test a candidate signature of 20 bytes against that test data only requires
20 compares into the data structure. And the more bytes of test data you have the greater your
prediction of false positive rates for a candidate signature will be.

Two concerns that we had about our proposed approach were (1) how quickly we could
build the suffix tree and (2) how large the suffix tree would be compared to the original test data.
Fortunately Esko Ukkonen developed an algorithm that, with respect to the number of test bytes,
can build the suffix tree in linear time. Furthermore, the size of the suffix tree is also linear with
respect to the data [Ukko 95]. This roughly means that if the suffix tree for 100 MBytes of data
was X bytes in size, then the suffix tree for 200 MBytes of data would be about 2X bytes in size.

We measure a suffix tree’s size by the number of link nodes in the tree. For example, the
tree in Figure 4 has eight link nodes, where a grey oval identifies each link node. While our
graphic representation implies that links are of different sizes depending on the number of bytes
in them, in the implementation each node is of equal size, and pointers (or indexes) indicate the

4
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location in and span of the original data that the node represents. In the Ukkonen algorithm the
number of link nodes (grey ovals) are proportional to the size of the original data that the tree
represents.

X a b x a ¢

Individual link nodes
in the suffix tree

Figure 4: Number of Link Nodes

The one drawback of the implementation we use is that while the tree size is proportional
to the data that it represents, there is still a relatively large constant expansion factor. For
example, in the worst-case scenario for every byte of test data we need 30 bytes of data structure.
The data in the worst-case scenario would be completely random and non-compressible.
Fortunately in practice this will not generally be the case, and we believe that we can recognize
apparently random data and treat it separately.

5.2 Moving to Support Larger Data Sets

Our current implementation developed for this phase of the project is completely in
memory, and this limits the amount of data that we can represent in our suffix trees. To address
this limitation we will move to a disk-based solution in the next phase of the project. To make
this transition easier we have modified our current in-memory solution by removing the use of
linked lists, binary trees, and arrays and are now using hash tables containing objects. In the
database solution each object will map to a table, and the keys used in the hash tables will be the
same keys used to link tables in the database. Since modern databases easily support terabytes of
data, our new solution should scale to large data sets.

5.3 Example Runs

To demonstrate scaling behavior of our implementation of a suffix tree using the
Ukkonen algorithm we ran the data on two sets of data: data from web servers and data from web
clients. The data from the web server was dominated by compressed images, and compressed
images provide a close approximation to random data. The data from clients to the web servers
exhibit a much more regular pattern, is more compressible, and therefore creates smaller suffix
trees.

Figure 5 shows the number of suffix tree nodes (vertical axis) needed to represent the
number of bytes from a web server (horizontal axis). The graph represents 250 packets
containing data (primarily compressed images), and the number of bytes processed and the
number of nodes used to represent the current suffix tree are calculated after each packet. In
other words, there are 250 data points represented by the line. The line is remarkably straight
indicating very little compression was possible.
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Figure 5: Suffix Tree Size When Processing Relatively Non-compressible Data

Figure 6 shows the number of suffix tree nodes (vertical axis) needed to represent the
number of bytes from a web client (horizontal axis). Once again the graph represents 250 data
points representing the number of bytes processed the number of nodes used after each data
packet. There are two primary differences between this graph and the graph from Figure 5. First,
the growth rate of the suffix tree is roughly half the rate per byte processed than it is for the server
data. This is because the web client data has more repetition resulting in more “re-use” of links in
the suffix tree. Second, and more noticeable, the line is not nearly as straight as it was in the
previous figure. Once again, this is a side effect of the repetition in the data. When we are
processing relatively similar data the graph tends to flatten out a bit, and when we processes
relatively unique data the graph tends to spike up more.
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Figure 6: Suffix Tree Size When Processing Compressible Data
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6 Conclusions

The automatic signature generation project will assist security analysts in finding
signatures for an attack that have optimally low and predictable false positive rates. Furthermore,
for fast moving attacks (e.g., worms) the proposed approach is fast enough to automatically
generate signatures that can be deployed in content-based firewalls to slow or stop the spread of
the worm before significant damage can be done.

The key technology to achieve these capabilities is the suffix tree, and we have
implemented an in-memory version of the Ukkonen suffix tree algorithm. The Ukkonen
algorithm can build a suffix tree from test data in linear time, and the suffix tree’s size is also
linear in size with respect to the original data. We have developed a second-generation in-
memory solution that maps cleanly to database schemas. By using a database approach our
solution should support terabytes of test data.
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